Screening approaches for lung cancer by blood-based biomarkers: Challenges and opportunities

过度诊断 肺癌筛查 医学 肺癌 背景(考古学) 生物标志物 重症监护医学 癌症 癌症筛查 生物标志物发现 肿瘤科 生物信息学 内科学 蛋白质组学 古生物学 化学 基因 生物 生物化学
作者
Daan van den Broek,Harry J.M. Groen
出处
期刊:Tumor Biology [SAGE Publishing]
卷期号:46 (s1): S65-S80 被引量:2
标识
DOI:10.3233/tub-230004
摘要

Lung cancer (LC) is one of the leading causes for cancer-related deaths in the world, accounting for 28% of all cancer deaths in Europe. Screening for lung cancer can enable earlier detection of LC and reduce lung cancer mortality as was demonstrated in several large image-based screening studies such as the NELSON and the NLST. Based on these studies, screening is recommended in the US and in the UK a targeted lung health check program was initiated. In Europe lung cancer screening (LCS) has not been implemented due to limited data on cost-effectiveness in the different health care systems and questions on for example the selection of high-risk individuals, adherence to screening, management of indeterminate nodules, and risk of overdiagnosis. Liquid biomarkers are considered to have a high potential to address these questions by supporting pre- and post- Low Dose CT (LDCT) risk-assessment thereby improving the overall efficacy of LCS. A wide variety of biomarkers, including cfDNA, miRNA, proteins and inflammatory markers have been studied in the context of LCS. Despite the available data, biomarkers are currently not implemented or evaluated in screening studies or screening programs. As a result, it remains an open question which biomarker will actually improve a LCS program and do this against acceptable costs. In this paper we discuss the current status of different promising biomarkers and the challenges and opportunities of blood-based biomarkers in the context of lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
真菌完成签到,获得积分10
刚刚
哼哼哈嘿发布了新的文献求助10
1秒前
gnufgg完成签到,获得积分10
1秒前
要减肥的弱完成签到,获得积分10
2秒前
丘比特应助姗姗xl采纳,获得10
2秒前
wocao发布了新的文献求助10
2秒前
blue2021发布了新的文献求助10
3秒前
3秒前
4秒前
YXL发布了新的文献求助10
4秒前
4秒前
鲤鱼诗桃发布了新的文献求助10
5秒前
5秒前
Ma完成签到,获得积分10
6秒前
兴空无痕完成签到,获得积分10
7秒前
科研通AI5应助HUAJIAO采纳,获得10
7秒前
科研小白完成签到,获得积分10
7秒前
胖胖猪完成签到,获得积分10
8秒前
pangzh完成签到,获得积分10
8秒前
丘比特应助阿九采纳,获得10
8秒前
8秒前
8秒前
研友_VZG7GZ应助blue2021采纳,获得10
9秒前
哦可完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
赘婿应助长安采纳,获得10
12秒前
科目三应助阿宝帝采纳,获得10
12秒前
12秒前
王一琳完成签到,获得积分10
13秒前
curry完成签到,获得积分20
13秒前
14秒前
阿夸发布了新的文献求助10
15秒前
小蘑菇应助杨氏采纳,获得10
15秒前
AUGKING27完成签到 ,获得积分10
16秒前
ZMK发布了新的文献求助10
16秒前
浅浅蓝完成签到,获得积分10
16秒前
姗姗xl完成签到,获得积分10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729877
求助须知:如何正确求助?哪些是违规求助? 3274712
关于积分的说明 9988365
捐赠科研通 2990104
什么是DOI,文献DOI怎么找? 1640896
邀请新用户注册赠送积分活动 779488
科研通“疑难数据库(出版商)”最低求助积分说明 748235