Optimizing task allocation with temporal‐spatial privacy protection in mobile crowdsensing

计算机科学 拥挤感测 任务(项目管理) 隐私保护 移动设备 人机交互 计算机安全 万维网 经济 管理
作者
Yuping Liu,Honglong Chen,Xiaolong Liu,Wentao Wei,Huansheng Xue,Osama Alfarraj,Zafer Al-Makhadmeh
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13717
摘要

Abstract Mobile Crowdsensing (MCS) is considered to be a key emerging example of a smart city, which combines the wisdom of dynamic people with mobile devices to provide distributed, ubiquitous services and applications. In MCS, each worker tends to complete as many tasks as possible within the limited idle time to obtain higher income, while completing a task may require the worker to move to the specific location of the task and perform continuous sensing. Thus the time and location information of each worker is necessary for an efficient task allocation mechanism. However, submitting the time and location information of the workers to the system raises several privacy concerns, making it significant to protect both the temporal and spatial privacy of workers in MCS. In this article, we propose the Task Allocation with Temporal‐Spatial Privacy Protection (TASP) problem, aiming to maximize the total worker income to further improve the workers' motivation in executing tasks and the platform's utility, which is proved to be NP‐hard. We adopt differential privacy technology to introduce Laplace noise into the location and time information of workers, after which we propose the Improved Genetic Algorithm (SPGA) and the Clone‐Enhanced Genetic Algorithm (SPCGA), to solve the TASP problem. Experimental results on two real‐world datasets verify the effectiveness of the proposed SPGA and SPCGA with the required personalized privacy protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
无花果应助Ivy采纳,获得10
3秒前
aaaaa发布了新的文献求助10
4秒前
yoyo完成签到,获得积分10
4秒前
延胡索完成签到,获得积分10
6秒前
IAMXC发布了新的文献求助10
7秒前
呜呼啦呼完成签到,获得积分10
9秒前
9秒前
KK完成签到,获得积分10
10秒前
米欧完成签到,获得积分10
10秒前
11秒前
尊敬乐蕊完成签到,获得积分10
13秒前
Xulyun完成签到 ,获得积分10
14秒前
16秒前
材化小将军完成签到,获得积分10
17秒前
情怀应助春携秋水揽星河采纳,获得10
19秒前
栖月完成签到,获得积分10
20秒前
23秒前
机灵的冰夏完成签到,获得积分10
25秒前
long0809发布了新的文献求助10
28秒前
Crisp完成签到,获得积分10
28秒前
善学以致用应助sje采纳,获得10
31秒前
zz完成签到,获得积分10
33秒前
动听的谷秋完成签到 ,获得积分10
37秒前
乐乐应助忧伤的靖柔采纳,获得10
37秒前
小蘑菇应助昏睡的雨寒采纳,获得10
46秒前
potato_bel完成签到,获得积分10
47秒前
贝贝完成签到,获得积分10
47秒前
葶ting完成签到 ,获得积分10
51秒前
51秒前
传奇3应助如泣草芥采纳,获得10
53秒前
Droven完成签到 ,获得积分10
53秒前
Sophiaaa发布了新的文献求助10
55秒前
56秒前
华仔应助小田睡不醒采纳,获得10
58秒前
化学位移值完成签到 ,获得积分10
58秒前
59秒前
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194