An automated sleep staging tool based on simple statistical features of mice electroencephalography (EEG) and electromyography (EMG) data

脑电图 肌电图 睡眠(系统调用) 模式识别(心理学) 计算机科学 神经科学 物理医学与康复 听力学 心理学 语音识别 人工智能 医学 操作系统
作者
Rikuhiro G. Yamada,Kyoko Matsuzawa,Koji L. Ode,Hiroki R. Ueda
出处
期刊:European Journal of Neuroscience [Wiley]
卷期号:60 (7): 5467-5486 被引量:1
标识
DOI:10.1111/ejn.16465
摘要

Abstract Electroencephalogram (EEG) and electromyogram (EMG) are fundamental tools in sleep research. However, investigations into the statistical properties of rodent EEG/EMG signals in the sleep–wake cycle have been limited. The lack of standard criteria in defining sleep stages forces researchers to rely on human expertise to inspect EEG/EMG. The recent increasing demand for analysing large‐scale and long‐term data has been overwhelming the capabilities of human experts. In this study, we explored the statistical features of EEG signals in the sleep–wake cycle. We found that the normalized EEG power density profile changes its lower and higher frequency powers to a comparable degree in the opposite direction, pivoting around 20–30 Hz between the NREM sleep and the active brain state. We also found that REM sleep has a normalized EEG power density profile that overlaps with wakefulness and a characteristic reduction in the EMG signal. Based on these observations, we proposed three simple statistical features that could span a 3D space. Each sleep–wake stage formed a separate cluster close to a normal distribution in the 3D space. Notably, the suggested features are a natural extension of the conventional definition, making it useful for experts to intuitively interpret the EEG/EMG signal alterations caused by genetic mutations or experimental treatments. In addition, we developed an unsupervised automatic staging algorithm based on these features. The developed algorithm is a valuable tool for expediting the quantitative evaluation of EEG/EMG signals so that researchers can utilize the recent high‐throughput genetic or pharmacological methods for sleep research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lklklk完成签到,获得积分10
刚刚
红红火火恍恍惚惚完成签到,获得积分10
刚刚
FashionBoy应助欣慰的书本采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
赘婿应助冰勾板勾采纳,获得10
3秒前
Xiaojiu发布了新的文献求助10
4秒前
4秒前
4秒前
woyaojiayou完成签到,获得积分10
4秒前
5秒前
7秒前
257发布了新的文献求助10
7秒前
7秒前
晚意完成签到,获得积分10
8秒前
宁子发布了新的文献求助10
9秒前
Kiosta完成签到,获得积分10
9秒前
9秒前
执着谷兰完成签到,获得积分10
10秒前
Gc发布了新的文献求助10
10秒前
wang2832发布了新的文献求助10
11秒前
Androc发布了新的文献求助10
11秒前
失眠的惜天完成签到,获得积分10
11秒前
执着谷兰发布了新的文献求助30
12秒前
白白发布了新的文献求助10
12秒前
13秒前
耍酷的醉蓝完成签到,获得积分10
13秒前
热心克莉丝完成签到,获得积分10
13秒前
美好斓发布了新的文献求助10
13秒前
柳易槐发布了新的文献求助10
13秒前
257完成签到,获得积分20
14秒前
ChenJohnny应助Kiosta采纳,获得20
14秒前
14秒前
zer0发布了新的文献求助10
14秒前
香蕉觅云应助微调采纳,获得10
14秒前
搜集达人应助高兴采文采纳,获得10
14秒前
领导范儿应助Max采纳,获得10
15秒前
汉堡包应助Xiaojiu采纳,获得10
16秒前
16秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271