多硫化物
硫黄
材料科学
氮化碳
多孔性
氮化物
金属锂
金属
化学工程
锂(药物)
锂离子电池的纳米结构
纳米技术
阳极
冶金
化学
复合材料
电解质
电极
有机化学
催化作用
图层(电子)
医学
工程类
物理化学
光催化
内分泌学
作者
Ruirui Wang,Jihuang Jiao,Da Liu,Yufei He,Yaxiong Yang,Dalin Sun,Honge Pan,Fang Fang,Renbing Wu
出处
期刊:Small
[Wiley]
日期:2024-07-08
标识
DOI:10.1002/smll.202405148
摘要
Abstract The practical implementation of lithium–sulfur batteries is severely hindered by the rapid capacity fading due to the solubility of the intermediate lithium polysulfides (LiPSs) and the sluggish redox kinetics. Herein, high‐entropy metal nitride nanocrystals (HEMN) embedded within nitrogen‐doped concave porous carbon (N‐CPC) polyhedra are rationally designed as a sulfur host via a facile zeolitic imidazolate framework (ZIF)‐driven adsorption‐nitridation process toward this challenge. The configuration of high‐entropy with incorporated metal manganese (Mn) and chromium (Cr) will optimize the d‐band center of active sites with more electrons occupied in antibonding orbitals, thus promoting the adsorption and catalytic conversion of LiPSs. While the concave porous carbon not only accommodates the volume change upon the cycling processes but also physically confines and exposes active sites for accelerated sulfur redox reactions. As a result, the resultant HEMN/N‐CPC composites‐based sulfur cathode can deliver a high specific capacity of 1274 mAh g −1 at 0.2 C and a low capacity decay rate of 0.044% after 1000 cycles at 1 C. Moreover, upon sulfur loading of 5.0 mg cm −2 , the areal capacity of 5.0 mAh cm −2 can still be achieved. The present work may provide a new avenue for the design of high‐performance cathodes in Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI