Nondestructive detection of adulterated wolfberry (Lycium Chinense) fruits based on hyperspectral imaging technology

高光谱成像 支持向量机 人工智能 模式识别(心理学) 线性判别分析 试验装置 核(代数) 遗传算法 计算机科学 数学 机器学习 组合数学
作者
Adria Nirere,Jun Sun,Rakhwe Kama,Vincent Akolbire Atindana,Felix Didier Nikubwimana,Keza Dominique Dusabe,Yuhao Zhong
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (4) 被引量:8
标识
DOI:10.1111/jfpe.14293
摘要

Abstract In order to detect adulterants on Lycium Chinense species effectively, a rapid, clean, and nondestructive detection method based on hyperspectral imaging (HSI) technology was conducted in a wavelength range of 400.68–1001.60 nm. Industrial sulfur particles were chosen as a dye to prepare three groups of adulterated L. Chinense samples as the research object. The whole L. Chinense was considered the region of interest. First, a multiple scatter correction (MSC) method was used to preprocess spectra data. The competitive adaptive reweighted sampling (CARS) and linear discriminant analysis approaches were contrasted for optimal extraction of wavelengths characteristic. Then, two models were established: K‐nearest neighbor (KNN) and support vector machine (SVM). Furthermore, the performance accuracies of KNN and SVM models were compared. According to the outcomes, the SVM model built on CARS provided the best classification impact. The accuracy for the prediction set was 98.75%, and the accuracy for the training set was 100%. Also, the kernel parameters c and g of the SVM model were enhanced by genetic algorithm (GA) optimization. The values parameters ( c , g) were set at 14.975 and 0.224, respectively, and the results improved by 1.25% at an elapsed time of 1.887 s, with the accuracy reaching 100% on both training and test sets. This study aimed to detect and classify sulfur‐adulterated wolfberries using an improved SVM and HSI. Finally, the results demonstrate that a combination of HSI and the CARS‐GA‐SVM model could be used for the rapid detection of foreign entities' in wolfberry fruits. Practical applications Dried wolfberry adulteration has a direct link to the overall quality of the fruits, and potentially compromises the health of the fruits consumers. The traditional methods of testing adulterants on Lycium Chinense are arduous, require a lot of time, and are highly impacted by biased elements, necessitating new techniques. HSI technology, on the other hand, is nondestructive, quick/fast, accurate, subjective, reproducible, and pollution‐free. The study findings proved to be recommendable for initiating a feasible mobile system for rapidly detecting adulteration on L. Chinense .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气的向松完成签到 ,获得积分10
1秒前
1秒前
小心甜死完成签到,获得积分10
2秒前
小马甲应助wzy采纳,获得10
2秒前
3秒前
5秒前
sillyforce发布了新的文献求助10
5秒前
tguczf发布了新的文献求助10
6秒前
白羽佳发布了新的文献求助10
6秒前
无情的镜子完成签到,获得积分10
6秒前
科研通AI6应助tuotuo采纳,获得30
7秒前
乐乐应助风中雨筠采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
zhoumaoyuan完成签到,获得积分10
8秒前
可爱的函函应助zyx采纳,获得10
8秒前
zzzqqq完成签到,获得积分10
9秒前
9秒前
AN发布了新的文献求助30
9秒前
一一发布了新的文献求助10
10秒前
机灵的雁蓉完成签到,获得积分10
10秒前
zhoumaoyuan发布了新的文献求助10
11秒前
辛勤含巧发布了新的文献求助10
11秒前
BIANGOUGOU完成签到,获得积分20
13秒前
panda_123发布了新的文献求助30
13秒前
14秒前
15秒前
成小调完成签到,获得积分10
15秒前
文献小聂发布了新的文献求助10
15秒前
15秒前
17秒前
酷波er应助genius_yue采纳,获得10
17秒前
水123发布了新的文献求助10
18秒前
花凉完成签到,获得积分10
18秒前
20秒前
花凉发布了新的文献求助10
20秒前
21秒前
21秒前
My完成签到,获得积分10
21秒前
成小调发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601254
求助须知:如何正确求助?哪些是违规求助? 4686675
关于积分的说明 14845664
捐赠科研通 4680054
什么是DOI,文献DOI怎么找? 2539261
邀请新用户注册赠送积分活动 1506128
关于科研通互助平台的介绍 1471283