Nondestructive detection of adulterated wolfberry (Lycium Chinense) fruits based on hyperspectral imaging technology

高光谱成像 支持向量机 人工智能 模式识别(心理学) 线性判别分析 试验装置 核(代数) 遗传算法 计算机科学 数学 机器学习 组合数学
作者
Adria Nirere,Jun Sun,Rakhwe Kama,Vincent Akolbire Atindana,Felix Didier Nikubwimana,Keza Dominique Dusabe,Yuhao Zhong
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (4) 被引量:8
标识
DOI:10.1111/jfpe.14293
摘要

Abstract In order to detect adulterants on Lycium Chinense species effectively, a rapid, clean, and nondestructive detection method based on hyperspectral imaging (HSI) technology was conducted in a wavelength range of 400.68–1001.60 nm. Industrial sulfur particles were chosen as a dye to prepare three groups of adulterated L. Chinense samples as the research object. The whole L. Chinense was considered the region of interest. First, a multiple scatter correction (MSC) method was used to preprocess spectra data. The competitive adaptive reweighted sampling (CARS) and linear discriminant analysis approaches were contrasted for optimal extraction of wavelengths characteristic. Then, two models were established: K‐nearest neighbor (KNN) and support vector machine (SVM). Furthermore, the performance accuracies of KNN and SVM models were compared. According to the outcomes, the SVM model built on CARS provided the best classification impact. The accuracy for the prediction set was 98.75%, and the accuracy for the training set was 100%. Also, the kernel parameters c and g of the SVM model were enhanced by genetic algorithm (GA) optimization. The values parameters ( c , g) were set at 14.975 and 0.224, respectively, and the results improved by 1.25% at an elapsed time of 1.887 s, with the accuracy reaching 100% on both training and test sets. This study aimed to detect and classify sulfur‐adulterated wolfberries using an improved SVM and HSI. Finally, the results demonstrate that a combination of HSI and the CARS‐GA‐SVM model could be used for the rapid detection of foreign entities' in wolfberry fruits. Practical applications Dried wolfberry adulteration has a direct link to the overall quality of the fruits, and potentially compromises the health of the fruits consumers. The traditional methods of testing adulterants on Lycium Chinense are arduous, require a lot of time, and are highly impacted by biased elements, necessitating new techniques. HSI technology, on the other hand, is nondestructive, quick/fast, accurate, subjective, reproducible, and pollution‐free. The study findings proved to be recommendable for initiating a feasible mobile system for rapidly detecting adulteration on L. Chinense .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nebula完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
WTC完成签到 ,获得积分10
1秒前
1秒前
pipi完成签到,获得积分10
1秒前
坦率的断秋完成签到 ,获得积分10
1秒前
本杰明发布了新的文献求助10
2秒前
可爱的函函应助十字花科采纳,获得10
2秒前
宋宋完成签到,获得积分10
2秒前
sss发布了新的文献求助10
2秒前
5秒前
灿华完成签到 ,获得积分10
5秒前
RR完成签到,获得积分10
6秒前
pups发布了新的文献求助10
6秒前
6秒前
慕青应助zhang采纳,获得20
6秒前
linmo发布了新的文献求助10
6秒前
NexusExplorer应助pkaq采纳,获得10
6秒前
可靠的青完成签到,获得积分10
6秒前
宋宋发布了新的文献求助10
6秒前
无聊的伊完成签到,获得积分10
7秒前
7秒前
小二郎应助Voloid采纳,获得20
7秒前
8秒前
8秒前
8秒前
豆包完成签到,获得积分10
8秒前
iNk应助一只猪采纳,获得20
8秒前
乐乐应助何姗悦采纳,获得10
8秒前
9秒前
9秒前
zd完成签到,获得积分10
9秒前
10秒前
小蘑菇应助Jan采纳,获得10
12秒前
12秒前
shrek完成签到,获得积分10
12秒前
LaTeXer应助Leo采纳,获得50
12秒前
save发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3495998
关于积分的说明 11080354
捐赠科研通 3226418
什么是DOI,文献DOI怎么找? 1783846
邀请新用户注册赠送积分活动 867937
科研通“疑难数据库(出版商)”最低求助积分说明 800978