A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure

机器人 工作区 运动学 软机器人 机器人学 工程类 曲率 常曲率 人工智能 计算机科学 机械工程 模拟 物理 经典力学 几何学 数学
作者
Pan Zhou,Jiantao Yao,Shuai Zhang,Chunjie Wei,Hongyu Zhang,Shupeng Qi
出处
期刊:Bioinspiration & Biomimetics [IOP Publishing]
卷期号:17 (6): 066012-066012 被引量:9
标识
DOI:10.1088/1748-3190/ac8c10
摘要

Rigid-flexible-soft coupled robots are an important development direction of robotics, which face many theoretical and technical challenges in their design, manufacture, and modeling. Inspired by fishbones, we propose a novel cable-driven single-backbone continuum robot which has a compact structure, is lightweight, and has high dexterity. In contrast to the existing single-backbone continuum robots, the middle backbone of the continuum robot is serially formed by multiple cross-arranged bioinspired fishbone units. The proposed bioinspired fishbone unit, having good one-dimensional bending properties, is a special rigid-flexible-soft structure mainly made by multi-material 3D printing technology. The unique design and manufacture of the middle backbone provide the continuum robot with excellent constant curvature characteristics and reduce the coupling between different motion dimensions, laying a foundation for the continuum robot to have a more accurate theoretical model as well as regular and controllable deformation. Moreover, we build the forward and inverse kinematics model based on the geometric analysis method, and analyze its workspace. Further, the comparison between the experimental and theoretical results shows that the prediction errors of the kinematics model are within the desired 0.5 mm. Also, we establish the relation between the cable driving force of the bioinspired fishbone unit and its bending angle, which can provide guidance for the optimization of the continuum robot in the future. The application demos prove that the continuum robot has good dexterity and compliance, and can perform tasks such as obstacle crossing locomotion and narrow space transportation. This work provides new ideas for the bioinspired design and high-precision modeling of continuum robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助淡定如之采纳,获得10
刚刚
刚刚
刚刚
可一乐完成签到,获得积分10
刚刚
1秒前
chen完成签到,获得积分10
1秒前
demom完成签到,获得积分10
1秒前
YCD发布了新的文献求助10
1秒前
所所应助忐忑的吐司采纳,获得10
1秒前
Owen应助ZAJ采纳,获得10
2秒前
fei菲飞发布了新的文献求助10
2秒前
笨笨垣完成签到,获得积分10
3秒前
3秒前
搜集达人应助小郑的姜姜采纳,获得10
3秒前
科研小白完成签到,获得积分10
4秒前
chen发布了新的文献求助10
4秒前
无花果应助不秃不秃采纳,获得10
4秒前
开心大王发布了新的文献求助10
5秒前
okl发布了新的文献求助10
5秒前
暗河发布了新的文献求助20
6秒前
6秒前
6秒前
6秒前
6秒前
sun完成签到,获得积分10
7秒前
7秒前
ZKY_ZM完成签到,获得积分10
7秒前
笨笨垣发布了新的文献求助10
7秒前
人各有痣发布了新的文献求助10
8秒前
哈哈hehe发布了新的文献求助10
8秒前
ming123ah发布了新的文献求助10
8秒前
8秒前
qiansongivy完成签到,获得积分20
9秒前
科研通AI5应助无牙采纳,获得10
9秒前
嘎嘣脆发布了新的文献求助10
9秒前
蓝莓味蛋挞完成签到,获得积分10
9秒前
10秒前
10秒前
曲书文完成签到,获得积分10
10秒前
今后应助孤独的AD钙采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524268
求助须知:如何正确求助?哪些是违规求助? 3105256
关于积分的说明 9273037
捐赠科研通 2802224
什么是DOI,文献DOI怎么找? 1537973
邀请新用户注册赠送积分活动 715896
科研通“疑难数据库(出版商)”最低求助积分说明 709089