清脆的
Cas9
基因组编辑
化学
转染
亚基因组mRNA
细胞生物学
分子生物学
生物化学
生物
基因
作者
Qian Sun,Hongqian Zhang,Feng Ding,Xue Gao,Zongwei Zhu,Chuanxu Yang
标识
DOI:10.1016/j.ijpharm.2024.123845
摘要
CRISPR-Cas genome editing technology holds great promise for wide-ranging biomedical applications. However, the development of efficient delivery system for CRISPR-Cas components remains challenging. Herein, we synthesized a series of ionizable lipids by conjugation of alkyl-acrylate to different amine molecules and further assembled ionizable lipid nanoparticles (iLNPs) for co-delivery of Cas9 mRNA and sgRNA. Among all the iLNP candidates, 1A14-iLNP with lipids containing spermine as amine head, demonstrated the highest cellular uptake, endosomal escape and mRNA expression in vitro. Co-delivery of Cas9 mRNA and sgRNA targeting EGFP by 1A14-iLNP achieved the highest EGFP knockout efficiency up to 70% in HeLa-EGFP cells. In addition, 1A14-iLNP displayed passive liver-targeting delivery of Cas9 mRNA in vivo with good biocompatibility. Moreover, we developed a simple method of lyophilization-mediated reverse transfection of CRISPR-Cas9 components for efficient genome editing. Therefore, the developed 1A14-iLNP and the lyophilization formulation, represent a potent solution for CRISPR-Cas9 delivery, which might broaden the future of biomedical applications of both mRNA and CRISPR-based therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI