已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Action Knee Contact Force Prediction by Domain Adaptation

动作(物理) 接触力 适应(眼睛) 计算机科学 领域(数学分析) 物理 心理学 数学 经典力学 神经科学 数学分析 量子力学
作者
Iliana Loi,Evangelia I. Zacharaki,Κωνσταντίνος Μουστάκας
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 122-132 被引量:2
标识
DOI:10.1109/tnsre.2023.3345006
摘要

Most recent musculoskeletal dynamics estimation methods are designed for predefined actions, such as gait, and don't generalize to various tasks. In this work, we address the problem of estimating internal biomechanical forces during more than one actions by introducing unsupervised domain adaptation into a deep learning model. More specifically, we developed a Bidirectional Long Short-Term Memory network for knee contact force prediction, enhanced with correlation alignment layers, in order to minimize the domain shift between kinematic data from different actions. Furthermore, we used the novel Neural State Machine (NSM) as a simulation platform to test and visualize our model predictions in a wide range of trajectories adapted to different 3D scene geometries in real-time. We conducted multiple experiments, including comparison with previous models, model alignment across action classes and real-to-synthetic data alignment. The results showed that the proposed deep learning architecture with domain adaptation performs better than the benchmark in terms of NRMSE and t-test. Overall, our method is capable of predicting knee contact forces for more than one action classes using a single architecture and thereby opens the path for estimating internal forces for intermediate actions, while the knowledge of the hidden state of motion may be used to support personalized rehabilitation. Moreover, our model can be easily integrated into any human motion simulation environment, which shows its potential in enabling biomechanical analysis in an automated and computationally efficient way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmxr完成签到,获得积分10
刚刚
刚刚
2秒前
甜辣小泡芙完成签到,获得积分10
3秒前
Van完成签到,获得积分20
3秒前
mmxr发布了新的文献求助10
3秒前
cocolu应助自信的迎南采纳,获得10
5秒前
7秒前
香蕉觅云应助C/R采纳,获得10
7秒前
科研通AI2S应助江河采纳,获得10
9秒前
9秒前
逆光夏年发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
kl发布了新的文献求助10
18秒前
C/R发布了新的文献求助10
19秒前
ding应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
22秒前
不安青牛应助科研通管家采纳,获得10
22秒前
桐桐应助大力奇迹采纳,获得10
22秒前
从容芮应助科研通管家采纳,获得10
22秒前
不安青牛应助科研通管家采纳,获得20
22秒前
羽羽完成签到 ,获得积分10
23秒前
24秒前
JamesPei应助逆光夏年采纳,获得10
26秒前
欣喜的迎波完成签到,获得积分10
28秒前
ikun完成签到,获得积分10
28秒前
32秒前
36秒前
39秒前
40秒前
田様应助木梯子采纳,获得30
40秒前
40秒前
41秒前
wing完成签到 ,获得积分10
42秒前
wfl完成签到,获得积分10
43秒前
甜甜易真完成签到,获得积分10
44秒前
屠甜甜发布了新的文献求助20
44秒前
44秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417307
求助须知:如何正确求助?哪些是违规求助? 3018940
关于积分的说明 8886010
捐赠科研通 2706400
什么是DOI,文献DOI怎么找? 1484278
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681110