Retinal Photograph-based Deep Learning System for Detection of Thyroid-Associated Ophthalmopathy

医学 人工智能 甲状腺 眼科 验光服务 内科学 计算机科学
作者
Xue Jiang,Li Dong,Lihua Luo,Kai Zhang,Dongmei Li
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:35 (2): e164-e167 被引量:5
标识
DOI:10.1097/scs.0000000000009919
摘要

Background: The diagnosis of thyroid-associated ophthalmopathy (TAO) usually requires a comprehensive examination, including clinical symptoms, radiological examinations, and blood tests. Therefore, cost-effective and noninvasive methods for the detection of TAO are needed. This study aimed to establish a deep learning-based system to detect TAO based on retinal photographs. Materials and methods: The multicenter observational study included retinal photographs taken from TAO patients and normal participants in 2 hospitals in China. Forty-five-degree retinal photographs, centered on the midpoint between the optic disc and the macula, were captured by trained ophthalmologists. The authors first trained a convolutional neural network model to identify TAO using data collected from one hospital. After internal validation, the model was further evaluated in another hospital as an external validation data set. Results: The study included 1182 retinal photographs of 708 participants for model development, and 365 retinal photographs (189 participants) were obtained as the external validation data set. In the internal validation, the area under the receiver operator curve was 0.900 (95% CI: 0.889–0.910) and the accuracy was 0.860 (95% CI: 0.849–0.869). In the external data set, the model reached an area under the curve of 0.747 (95% CI: 0.728–0.763) and achieved an accuracy of 0.709 (95% CI: 0.690–0.724). Conclusions: Deep learning-based systems may be promising for identifying TAO in normal subjects using retinal fundus photographs. It may serve as a cost-effective and noninvasive method to detect TAO in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kusedayang发布了新的文献求助10
刚刚
yuni完成签到,获得积分10
1秒前
1秒前
深情安青应助ming采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
牛大锤完成签到,获得积分10
3秒前
夕杳完成签到,获得积分10
4秒前
昏睡的咖啡完成签到,获得积分10
5秒前
斑其完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
李伟完成签到,获得积分10
9秒前
loseyourself发布了新的文献求助20
11秒前
聪慧的凝海完成签到 ,获得积分0
11秒前
李健应助科研通管家采纳,获得10
11秒前
小郭子应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
12秒前
枭声应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
开心的弱应助科研通管家采纳,获得20
12秒前
李健应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
小郭子应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
枭声应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
旧言颜延发布了新的文献求助10
12秒前
开心的弱应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
dangdang应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
小郭子应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742394
求助须知:如何正确求助?哪些是违规求助? 5408115
关于积分的说明 15344853
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625257
邀请新用户注册赠送积分活动 1574095
关于科研通互助平台的介绍 1531070