Retinal Photograph-based Deep Learning System for Detection of Thyroid-Associated Ophthalmopathy

医学 视网膜 眼底(子宫) 人工智能 接收机工作特性 卷积神经网络 深度学习 眼科 验光服务 内科学 计算机科学
作者
Xue Jiang,Li Dong,Lihua Luo,Kai Zhang,Dongmei Li
出处
期刊:Journal of Craniofacial Surgery [Lippincott Williams & Wilkins]
标识
DOI:10.1097/scs.0000000000009919
摘要

The diagnosis of thyroid-associated ophthalmopathy (TAO) usually requires a comprehensive examination, including clinical symptoms, radiological examinations, and blood tests. Therefore, cost-effective and noninvasive methods for the detection of TAO are needed. This study aimed to establish a deep learning-based system to detect TAO based on retinal photographs.The multicenter observational study included retinal photographs taken from TAO patients and normal participants in 2 hospitals in China. Forty-five-degree retinal photographs, centered on the midpoint between the optic disc and the macula, were captured by trained ophthalmologists. The authors first trained a convolutional neural network model to identify TAO using data collected from one hospital. After internal validation, the model was further evaluated in another hospital as an external validation data set.The study included 1182 retinal photographs of 708 participants for model development, and 365 retinal photographs (189 participants) were obtained as the external validation data set. In the internal validation, the area under the receiver operator curve was 0.900 (95% CI: 0.889-0.910) and the accuracy was 0.860 (95% CI: 0.849-0.869). In the external data set, the model reached an area under the curve of 0.747 (95% CI: 0.728-0.763) and achieved an accuracy of 0.709 (95% CI: 0.690-0.724).Deep learning-based systems may be promising for identifying TAO in normal subjects using retinal fundus photographs. It may serve as a cost-effective and noninvasive method to detect TAO in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助24先生采纳,获得10
刚刚
今后应助科研狗采纳,获得10
1秒前
Leslielaw完成签到,获得积分10
2秒前
hui发布了新的文献求助10
3秒前
明芬发布了新的文献求助10
3秒前
灰色白面鸮完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
lightman完成签到,获得积分10
5秒前
kunkun完成签到,获得积分10
6秒前
苏苏发布了新的文献求助10
6秒前
科研通AI6应助皮卡丘比特采纳,获得10
7秒前
Yara.H发布了新的文献求助10
8秒前
收集快乐完成签到 ,获得积分10
9秒前
9秒前
9秒前
cc发布了新的文献求助10
9秒前
牛牛发布了新的文献求助10
10秒前
hhan发布了新的文献求助10
10秒前
端庄的孤风完成签到 ,获得积分10
11秒前
12秒前
遥远的猫发布了新的文献求助10
13秒前
酷酷的贝总完成签到,获得积分10
14秒前
14秒前
15秒前
Mic发布了新的文献求助10
16秒前
16秒前
Solaire发布了新的文献求助10
17秒前
17秒前
17秒前
DSUNNY发布了新的文献求助10
17秒前
18秒前
今后应助孤鲸游采纳,获得30
18秒前
小二郎应助自然的幻雪采纳,获得10
19秒前
张小卷完成签到,获得积分10
19秒前
wql完成签到,获得积分10
20秒前
恩吉尔完成签到,获得积分10
20秒前
深深完成签到,获得积分20
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363