Retinal Photograph-based Deep Learning System for Detection of Thyroid-Associated Ophthalmopathy

医学 人工智能 甲状腺 眼科 验光服务 内科学 计算机科学
作者
Xue Jiang,Li Dong,Lihua Luo,Kai Zhang,Dongmei Li
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:35 (2): e164-e167 被引量:5
标识
DOI:10.1097/scs.0000000000009919
摘要

Background: The diagnosis of thyroid-associated ophthalmopathy (TAO) usually requires a comprehensive examination, including clinical symptoms, radiological examinations, and blood tests. Therefore, cost-effective and noninvasive methods for the detection of TAO are needed. This study aimed to establish a deep learning-based system to detect TAO based on retinal photographs. Materials and methods: The multicenter observational study included retinal photographs taken from TAO patients and normal participants in 2 hospitals in China. Forty-five-degree retinal photographs, centered on the midpoint between the optic disc and the macula, were captured by trained ophthalmologists. The authors first trained a convolutional neural network model to identify TAO using data collected from one hospital. After internal validation, the model was further evaluated in another hospital as an external validation data set. Results: The study included 1182 retinal photographs of 708 participants for model development, and 365 retinal photographs (189 participants) were obtained as the external validation data set. In the internal validation, the area under the receiver operator curve was 0.900 (95% CI: 0.889–0.910) and the accuracy was 0.860 (95% CI: 0.849–0.869). In the external data set, the model reached an area under the curve of 0.747 (95% CI: 0.728–0.763) and achieved an accuracy of 0.709 (95% CI: 0.690–0.724). Conclusions: Deep learning-based systems may be promising for identifying TAO in normal subjects using retinal fundus photographs. It may serve as a cost-effective and noninvasive method to detect TAO in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎呀哎呀呀完成签到,获得积分10
刚刚
miao发布了新的文献求助20
刚刚
伯赏元彤完成签到,获得积分10
刚刚
小金今天自律了吗完成签到,获得积分10
刚刚
buyu发布了新的文献求助10
刚刚
彭于晏应助现代的无春采纳,获得10
1秒前
英吉利25发布了新的文献求助10
1秒前
lq完成签到,获得积分10
2秒前
2秒前
2秒前
炸鸡腿完成签到,获得积分10
2秒前
幽默身影发布了新的文献求助10
2秒前
2秒前
Shan发布了新的文献求助10
3秒前
若枫发布了新的文献求助10
3秒前
科研通AI6应助专注的枫叶采纳,获得10
3秒前
starlx0813完成签到 ,获得积分10
3秒前
仁爱的凡波完成签到,获得积分10
3秒前
曹晨完成签到,获得积分20
4秒前
4秒前
4秒前
BIANYAN完成签到,获得积分10
4秒前
多看文献发布了新的文献求助10
5秒前
当你完成签到,获得积分10
5秒前
不接组会完成签到 ,获得积分10
5秒前
共享精神应助秋qiu采纳,获得10
6秒前
科研醉汉完成签到,获得积分10
6秒前
聪明的从梦完成签到,获得积分10
6秒前
lifang完成签到,获得积分10
6秒前
平常破茧完成签到,获得积分10
7秒前
7秒前
7秒前
桂花酒酿完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
斯文败类应助Ysera采纳,获得10
8秒前
Spike完成签到,获得积分10
8秒前
nostalgia完成签到,获得积分10
8秒前
承蒙大爱发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005