Retinal Photograph-based Deep Learning System for Detection of Thyroid-Associated Ophthalmopathy

医学 视网膜 眼底(子宫) 人工智能 接收机工作特性 卷积神经网络 深度学习 眼科 验光服务 内科学 计算机科学
作者
Xue Jiang,Li Dong,Lihua Luo,Kai Zhang,Dongmei Li
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/scs.0000000000009919
摘要

The diagnosis of thyroid-associated ophthalmopathy (TAO) usually requires a comprehensive examination, including clinical symptoms, radiological examinations, and blood tests. Therefore, cost-effective and noninvasive methods for the detection of TAO are needed. This study aimed to establish a deep learning-based system to detect TAO based on retinal photographs.The multicenter observational study included retinal photographs taken from TAO patients and normal participants in 2 hospitals in China. Forty-five-degree retinal photographs, centered on the midpoint between the optic disc and the macula, were captured by trained ophthalmologists. The authors first trained a convolutional neural network model to identify TAO using data collected from one hospital. After internal validation, the model was further evaluated in another hospital as an external validation data set.The study included 1182 retinal photographs of 708 participants for model development, and 365 retinal photographs (189 participants) were obtained as the external validation data set. In the internal validation, the area under the receiver operator curve was 0.900 (95% CI: 0.889-0.910) and the accuracy was 0.860 (95% CI: 0.849-0.869). In the external data set, the model reached an area under the curve of 0.747 (95% CI: 0.728-0.763) and achieved an accuracy of 0.709 (95% CI: 0.690-0.724).Deep learning-based systems may be promising for identifying TAO in normal subjects using retinal fundus photographs. It may serve as a cost-effective and noninvasive method to detect TAO in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强亦丝应助Hettl采纳,获得10
刚刚
小菜发布了新的文献求助10
1秒前
筱飞完成签到 ,获得积分10
1秒前
歌于心完成签到,获得积分10
1秒前
1235656646完成签到,获得积分10
1秒前
1秒前
2秒前
万能图书馆应助春夏秋冬采纳,获得10
3秒前
任性土豆发布了新的文献求助20
3秒前
木木发布了新的文献求助10
3秒前
3秒前
3秒前
谦让的青亦完成签到,获得积分10
3秒前
乙酰胆碱完成签到,获得积分10
4秒前
传奇3应助缥缈水蜜桃采纳,获得10
5秒前
yuan完成签到,获得积分10
5秒前
筱飞关注了科研通微信公众号
5秒前
5秒前
6秒前
6秒前
研友_VZG7GZ应助小菜采纳,获得10
6秒前
小星星发布了新的文献求助10
6秒前
7秒前
于是乎完成签到 ,获得积分10
7秒前
王海绵发布了新的文献求助10
7秒前
碧蓝丹秋发布了新的文献求助10
7秒前
LL发布了新的文献求助10
7秒前
乐乐应助淡然的书本采纳,获得10
7秒前
8秒前
脑洞疼应助Brain采纳,获得10
8秒前
乙酰胆碱发布了新的文献求助10
8秒前
nbing完成签到,获得积分10
8秒前
FightPeng发布了新的文献求助10
10秒前
静穆儿完成签到,获得积分10
10秒前
Weining完成签到,获得积分10
10秒前
喜屿完成签到 ,获得积分10
11秒前
Danish应助愉快彩虹采纳,获得10
11秒前
塞塞发布了新的文献求助10
11秒前
王太白完成签到,获得积分10
11秒前
Yolo完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143314
求助须知:如何正确求助?哪些是违规求助? 2794476
关于积分的说明 7811257
捐赠科研通 2450676
什么是DOI,文献DOI怎么找? 1303944
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386