Retinal Photograph-based Deep Learning System for Detection of Thyroid-Associated Ophthalmopathy

医学 人工智能 甲状腺 眼科 验光服务 内科学 计算机科学
作者
Xue Jiang,Li Dong,Lihua Luo,Kai Zhang,Dongmei Li
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:35 (2): e164-e167 被引量:5
标识
DOI:10.1097/scs.0000000000009919
摘要

Background: The diagnosis of thyroid-associated ophthalmopathy (TAO) usually requires a comprehensive examination, including clinical symptoms, radiological examinations, and blood tests. Therefore, cost-effective and noninvasive methods for the detection of TAO are needed. This study aimed to establish a deep learning-based system to detect TAO based on retinal photographs. Materials and methods: The multicenter observational study included retinal photographs taken from TAO patients and normal participants in 2 hospitals in China. Forty-five-degree retinal photographs, centered on the midpoint between the optic disc and the macula, were captured by trained ophthalmologists. The authors first trained a convolutional neural network model to identify TAO using data collected from one hospital. After internal validation, the model was further evaluated in another hospital as an external validation data set. Results: The study included 1182 retinal photographs of 708 participants for model development, and 365 retinal photographs (189 participants) were obtained as the external validation data set. In the internal validation, the area under the receiver operator curve was 0.900 (95% CI: 0.889–0.910) and the accuracy was 0.860 (95% CI: 0.849–0.869). In the external data set, the model reached an area under the curve of 0.747 (95% CI: 0.728–0.763) and achieved an accuracy of 0.709 (95% CI: 0.690–0.724). Conclusions: Deep learning-based systems may be promising for identifying TAO in normal subjects using retinal fundus photographs. It may serve as a cost-effective and noninvasive method to detect TAO in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lydia完成签到,获得积分10
刚刚
王然完成签到,获得积分10
1秒前
cdc完成签到 ,获得积分10
1秒前
1秒前
Anougme完成签到,获得积分10
1秒前
天真小甜瓜完成签到,获得积分10
1秒前
虚幻的小海豚完成签到,获得积分10
1秒前
曈梦完成签到,获得积分10
2秒前
PhD_Ren完成签到,获得积分10
2秒前
yangz发布了新的文献求助10
3秒前
saxg_hu完成签到 ,获得积分10
3秒前
yitonghan完成签到,获得积分10
4秒前
木乙完成签到,获得积分10
4秒前
流星发布了新的文献求助10
4秒前
巨大的小侠完成签到,获得积分10
4秒前
4秒前
搜集达人应助白瑾采纳,获得10
5秒前
aa完成签到,获得积分10
5秒前
Yu发布了新的文献求助10
5秒前
无极微光应助xiaohuang采纳,获得20
5秒前
5秒前
科研狗完成签到,获得积分10
5秒前
追寻翩跹完成签到,获得积分10
5秒前
Qin完成签到,获得积分10
5秒前
大饼完成签到,获得积分10
6秒前
田様应助Freelover采纳,获得10
6秒前
这个大头张呀完成签到,获得积分10
7秒前
coconut完成签到,获得积分10
7秒前
小cc完成签到 ,获得积分10
7秒前
Emma完成签到 ,获得积分10
7秒前
JamesPei应助看文献了采纳,获得10
7秒前
龚小丽完成签到,获得积分10
7秒前
7秒前
8秒前
我是老大应助葛力采纳,获得10
8秒前
8秒前
Tacikdokand完成签到,获得积分10
8秒前
yzy完成签到,获得积分10
8秒前
三水完成签到,获得积分10
8秒前
发顺丰发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551