Integrating deep transformer and temporal convolutional networks for SMEs revenue and employment growth prediction

计算机科学 收入 变压器 人工智能 卷积神经网络 机器学习 财务 业务 电气工程 电压 工程类
作者
Dening Lu,Shimon Schwartz,Linlin Xu,Mohammad Javad Shafiee,Norman G. Vinson,C. Czarnecki,Alexander Wong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124129-124129
标识
DOI:10.1016/j.eswa.2024.124129
摘要

Although the accurate potential for growth prediction is very important for Government grants and contributions programs to better support Small and Medium-sized Enterprises (SMEs), it is a challenging task due to the data heterogeneity (both structured data and free text data bilingual in English and French), the class imbalance issue, and the difficulties in efficient feature learning. To address these challenges, this paper presents a novel BERT-TCN model for portfolio predictions in government funding programs, with the following key contributions. First, we describe the application of a novel architecture to a prediction task involving sequential, structured, partially quantitative input data and free text input data. Specifically, our novel model predicts the growth of firms receiving government funding for innovation. Our model also deals with class imbalance in the data and the difficulties in efficient feature learning. Our model integrates a Transformer model, i.e., BERT, for text modeling with a Temporal Convolutional Network (TCN) for sequential prediction. Second, we also developed various performance evaluation criteria in Section 4.3, allowing comprehensive assessments of the proposed approach from both the machine learning perspective and funding program-specific perspective. Third, the importance of features (both text and numerical features) is quantified and evaluated, allowing insights into how different features contribute to the prediction and explainability of the proposed model. The proposed approach is trained and tested on a large dataset from a rich database, demonstrating that the proposed approach can greatly help individual human experts improve their results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elsalili发布了新的文献求助10
刚刚
可靠的老鼠完成签到,获得积分10
刚刚
二十二完成签到 ,获得积分10
2秒前
小白完成签到,获得积分10
2秒前
liangliang发布了新的文献求助10
4秒前
寒冷的面包完成签到,获得积分10
4秒前
4秒前
哈比完成签到,获得积分10
4秒前
ChinaYFX完成签到,获得积分10
5秒前
5秒前
HAPPY完成签到,获得积分10
5秒前
6秒前
6秒前
碧空发布了新的文献求助10
7秒前
水的叶子66完成签到,获得积分10
7秒前
Makeline完成签到 ,获得积分10
8秒前
8秒前
十七画发布了新的文献求助10
8秒前
8秒前
可爱项链完成签到,获得积分10
8秒前
9秒前
东方三问完成签到,获得积分10
10秒前
Hana发布了新的文献求助10
11秒前
子车茗应助小核桃采纳,获得10
12秒前
王婷完成签到,获得积分10
12秒前
思源应助研友_V8Qmr8采纳,获得10
13秒前
炙热的炳完成签到,获得积分10
14秒前
15秒前
Jason完成签到,获得积分10
15秒前
Alice完成签到,获得积分20
16秒前
来了咯完成签到,获得积分10
16秒前
可爱的函函应助Hey采纳,获得10
17秒前
在水一方应助小姜向阳开采纳,获得30
17秒前
17秒前
Hana完成签到,获得积分10
18秒前
顾矜应助ruochenzu采纳,获得10
18秒前
矿渣发布了新的文献求助10
19秒前
打打应助123采纳,获得10
19秒前
唐水之发布了新的文献求助20
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655