Enhanced Thermoelectric Efficiency through Li-Induced Phonon Softening in CuGaTe2

热电效应 材料科学 热导率 热电材料 声子 功勋 声子散射 凝聚态物理 光电子学 复合材料 热力学 物理
作者
Jan-Hendrik Pöhls,Marissa MacIver,Sevan Chanakian,Alexandra Zevalkink,Yu‐Chih Tseng,Yurij Mozharivskyj
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (19): 8719-8728 被引量:7
标识
DOI:10.1021/acs.chemmater.2c01869
摘要

Thermoelectric materials convert thermal energy into electrical energy and can be a solution for the global climate crisis. For advanced thermoelectric applications, the conversion efficiency has to be high, motivating the search for materials with a high average thermoelectric figure of merit. To achieve such large thermoelectric figures of merit, the electronic properties must be maximized, and the thermal transport must be minimized over a wide temperature range. The chalcopyrite CuGaTe2 exhibits promising electronic properties but suffers from poor thermoelectric performance due to its high lattice thermal conductivity. In the present study, we perform compressive sensing lattice dynamics (CSLD) and ShengBTE calculations, which suggest that the high room temperature lattice thermal conductivity is a result of high longitudinal group velocities. To effectively reduce the thermal conductivity, we introduce lithium into three variants of CuGaTe2: pristine, Sb-doped, and Ag-doped. All compositions exhibited a significant reduction in the lattice thermal conductivity with the inclusion of lithium without any compromise to the electronic properties. By comparing the elastic moduli, we demonstrate that the reduction in the lattice thermal conductivity is to some extent the result of phonon softening. The low thermal conductivity and high power factor in Cu0.90Li0.05Ag0.05GaTe2 lead to a 56% increase in the average zT compared to the pristine sample. Due to the low cost of lithium, this approach can be adapted to chalcopyrite compounds and other thermoelectric systems to develop sustainable and affordable applications for waste heat recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gy完成签到,获得积分20
1秒前
上官若男应助han采纳,获得10
1秒前
11111完成签到,获得积分10
1秒前
Criminology34应助Reborn采纳,获得10
1秒前
imcwj完成签到 ,获得积分10
2秒前
重新开始发布了新的文献求助10
2秒前
与你完成签到,获得积分20
2秒前
2秒前
所所应助SiDi采纳,获得10
3秒前
3秒前
英俊的铭应助kk采纳,获得10
3秒前
dd完成签到,获得积分10
4秒前
4秒前
5秒前
高晨焜完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
滕祥应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
林较瘦完成签到,获得积分10
6秒前
桐桐应助又是许想想采纳,获得10
6秒前
niNe3YUE应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
王卫应助科研通管家采纳,获得10
6秒前
清爽四娘完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
7秒前
滕祥应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
正直的西牛完成签到,获得积分10
7秒前
田様应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
与你发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709515
求助须知:如何正确求助?哪些是违规求助? 5195274
关于积分的说明 15257183
捐赠科研通 4862259
什么是DOI,文献DOI怎么找? 2609977
邀请新用户注册赠送积分活动 1560356
关于科研通互助平台的介绍 1518073