Enhanced Thermoelectric Efficiency through Li-Induced Phonon Softening in CuGaTe2

热电效应 材料科学 热导率 热电材料 声子 功勋 声子散射 凝聚态物理 光电子学 复合材料 热力学 物理
作者
Jan-Hendrik Pöhls,Marissa MacIver,Sevan Chanakian,Alexandra Zevalkink,Yu‐Chih Tseng,Yurij Mozharivskyj
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (19): 8719-8728 被引量:7
标识
DOI:10.1021/acs.chemmater.2c01869
摘要

Thermoelectric materials convert thermal energy into electrical energy and can be a solution for the global climate crisis. For advanced thermoelectric applications, the conversion efficiency has to be high, motivating the search for materials with a high average thermoelectric figure of merit. To achieve such large thermoelectric figures of merit, the electronic properties must be maximized, and the thermal transport must be minimized over a wide temperature range. The chalcopyrite CuGaTe2 exhibits promising electronic properties but suffers from poor thermoelectric performance due to its high lattice thermal conductivity. In the present study, we perform compressive sensing lattice dynamics (CSLD) and ShengBTE calculations, which suggest that the high room temperature lattice thermal conductivity is a result of high longitudinal group velocities. To effectively reduce the thermal conductivity, we introduce lithium into three variants of CuGaTe2: pristine, Sb-doped, and Ag-doped. All compositions exhibited a significant reduction in the lattice thermal conductivity with the inclusion of lithium without any compromise to the electronic properties. By comparing the elastic moduli, we demonstrate that the reduction in the lattice thermal conductivity is to some extent the result of phonon softening. The low thermal conductivity and high power factor in Cu0.90Li0.05Ag0.05GaTe2 lead to a 56% increase in the average zT compared to the pristine sample. Due to the low cost of lithium, this approach can be adapted to chalcopyrite compounds and other thermoelectric systems to develop sustainable and affordable applications for waste heat recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accepted应助zzj采纳,获得10
1秒前
WXR0721完成签到,获得积分10
1秒前
香蕉觅云应助开心瓜瓜瓜采纳,获得10
2秒前
嗯哼应助LIN_YX采纳,获得10
2秒前
464646发布了新的文献求助10
2秒前
六爻完成签到,获得积分10
3秒前
4秒前
斯文败类应助易哒哒采纳,获得10
4秒前
善学以致用应助LL采纳,获得10
4秒前
WXR0721发布了新的文献求助50
4秒前
老李啊完成签到,获得积分20
5秒前
Ir完成签到,获得积分20
5秒前
5秒前
xxx发布了新的文献求助10
5秒前
小二郎应助魏沛文采纳,获得30
6秒前
开心的母鸡完成签到,获得积分10
7秒前
AQQ关注了科研通微信公众号
8秒前
syl4316完成签到 ,获得积分10
8秒前
乐乐应助qingfeng采纳,获得10
9秒前
耍酷大炮完成签到,获得积分10
9秒前
聪明诗槐完成签到,获得积分10
9秒前
464646完成签到,获得积分20
9秒前
春江完成签到,获得积分10
9秒前
甜甜的茗发布了新的文献求助10
10秒前
10秒前
肉肉肉完成签到,获得积分10
11秒前
充电宝应助吱吱采纳,获得10
11秒前
张晓蕾关注了科研通微信公众号
11秒前
111关注了科研通微信公众号
12秒前
安详的冰凡完成签到 ,获得积分10
13秒前
yanice发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
16秒前
16秒前
17秒前
LL发布了新的文献求助10
17秒前
行路难完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169886
求助须知:如何正确求助?哪些是违规求助? 2821023
关于积分的说明 7932799
捐赠科研通 2481339
什么是DOI,文献DOI怎么找? 1321740
科研通“疑难数据库(出版商)”最低求助积分说明 633356
版权声明 602562