水准点(测量)
数学优化
帕累托原理
正确性
计算机科学
算法
高斯过程
贪婪算法
过程(计算)
高斯分布
数学
物理
量子力学
大地测量学
地理
操作系统
作者
Zhaoyi Xu,Yanjie Guo,Joseph H. Saleh
出处
期刊:Measurement
[Elsevier]
日期:2022-01-01
卷期号:187: 110370-110370
被引量:17
标识
DOI:10.1016/j.measurement.2021.110370
摘要
We develop a novel sensor placement method that maximizes monitoring performance while minimizing deployment cost. Our method integrates a reduced order model and multi-objective combinatorial optimization. We first decompose the spatio-temporal state field to be monitored by proper orthogonal decomposition (POD), and we use the Gaussian Process to model the uncertainty in each POD mode. Next, we develop a lazy greedy (LG)-∊-constraint optimization to derive the Pareto-optimal sensor configurations. We further design a branch and bound algorithm to calculate the global optimum and validate the correctness of select configurations on the LG-derived Pareto frontier. We evaluate and benchmark our algorithm in computational experiments based on the temperature dataset of the Berkeley Intel Lab. The computational results demonstrate that our algorithm places sensors at locations of large magnitude in the POD modes, and that our method achieves better state estimation accuracy and smaller reconstruction errors compared with alternative methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI