Oxygen-defective V2O5 nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc-ion batteries

纳米工程 材料科学 阴极 纳米片 水溶液 储能 电化学 化学工程 解吸 纳米技术 氧气储存 吸附 氧气 电极 化学 物理化学 功率(物理) 工程类 有机化学 物理 量子力学
作者
Zihan Wang,Pei Liang,Rongguo Zhang,Zhimin Liu,Wenying Li,Zhigang Pan,Hao Yang,Xiaodong Shen,Jin Wang
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:562: 150196-150196 被引量:42
标识
DOI:10.1016/j.apsusc.2021.150196
摘要

Aqueous zinc-ion batteries (ZIBs) have received considerable attention for reliable and low-cost energy storage. However, it remains a great challenge to develop cathode materials with high capacity and adequate cycle life due to the high polarization of bivalent Zn2+. Defect engineering has been demonstrated to enhance the electrochemical reaction sites but most defects are restricted to the surface of materials. We overcome this issue by incorporation of defect engineering and nanoengineering. Oxygen-defective V2O5 nanosheet arrays anchored on carbon cloth are employed as the cathode of ZIBs, which delivering comparable reversible capacity (322.9 and 256.6 at 1 and 5 A g−1) and stable cyclability (220 mAh g−1 after 500 cycles at 10 A g−1). Further DFT calculations validate that Zn2+ diffusion in oxygen-defective V2O5 is allowed along c axis, not only restricted along ab plane of V2O5, thus realizing a 3D Zn2+ diffusion with fast electrochemical kinetics and large capacitive storage. Moreover, the Zn2+ adsorption energies at defective sites of V2O5 was close to thermoneutral value, contributing reversible Zn2+ adsorption/desorption for ultra-stable Zn2+ storage performance. This synergistic strategy of defect engineering and nanoengineering reveal a promising potential for advanced materials of aqueous Zn-ion batteries and flexible storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
所所应助彭哒哒采纳,获得10
2秒前
Owen应助拳头采纳,获得10
3秒前
小小发布了新的文献求助10
3秒前
Jeff_Lin应助跳跃大侠采纳,获得10
3秒前
西红柿完成签到,获得积分10
4秒前
竹木生花完成签到,获得积分10
4秒前
邵将完成签到,获得积分10
4秒前
小闵发布了新的文献求助10
4秒前
lololol完成签到,获得积分10
5秒前
MM完成签到,获得积分10
5秒前
霍靓靓发布了新的文献求助10
5秒前
6秒前
6秒前
毛绒绒小狗完成签到,获得积分10
6秒前
6秒前
An应助潇洒的白猫采纳,获得10
7秒前
周小丁发布了新的文献求助10
7秒前
7秒前
yang完成签到,获得积分10
7秒前
拼搏的酸奶完成签到,获得积分10
8秒前
zw完成签到,获得积分10
8秒前
英俊的铭应助zxx5313491采纳,获得10
8秒前
8秒前
9秒前
小二郎应助蜀安采纳,获得200
9秒前
zyy发布了新的文献求助10
9秒前
zwy完成签到,获得积分10
10秒前
10秒前
10秒前
糖豆完成签到,获得积分10
10秒前
Owen应助包听枫采纳,获得10
11秒前
核桃应助lololol采纳,获得10
11秒前
哭唧唧发布了新的文献求助10
11秒前
11秒前
12秒前
Yy发布了新的文献求助10
12秒前
momo完成签到,获得积分10
12秒前
乐乐应助仁爱柠檬采纳,获得10
12秒前
12秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205080
求助须知:如何正确求助?哪些是违规求助? 4383908
关于积分的说明 13651462
捐赠科研通 4241962
什么是DOI,文献DOI怎么找? 2327122
邀请新用户注册赠送积分活动 1324898
关于科研通互助平台的介绍 1277083