Research on the magnetic resonance imaging brain tumor segmentation algorithm based on DO‐UNet

计算机科学 分割 卷积(计算机科学) 人工智能 图像分割 冗余(工程) 尺度空间分割 保险丝(电气) 算法 模式识别(心理学) 计算机视觉 人工神经网络 电气工程 工程类 操作系统
作者
Tongyuan Huang,Yao Liu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (1): 143-157 被引量:2
标识
DOI:10.1002/ima.22783
摘要

Abstract With the social and economic development and the improvement of people's living standards, smart medical care is booming, and medical image processing is becoming more and more popular in research, of which brain tumor segmentation is an important branch of medical image processing. However, the manual segmentation method of brain tumors requires a lot of time and effort from the doctor and has a great impact on the treatment of patients. In order to solve this problem, we propose a DO‐UNet model for magnetic resonance imaging brain tumor image segmentation based on attention mechanism and multi‐scale feature fusion to realize fully automatic segmentation of brain tumors. Firstly, we replace the convolution blocks in the original U‐Net model with the residual modules to prevent the gradient disappearing. Secondly, the multi‐scale feature fusion is added to the skip connection of U‐Net to fuse the low‐level features and high‐level features more effectively. In addition, in the decoding stage, we add an attention mechanism to increase the weight of effective information and avoid information redundancy. Finally, we replace the traditional convolution in the model with DO‐Conv to speed up the network training and improve the segmentation accuracy. In order to evaluate the model, we used the BraTS2018, BraTS2019, and BraTS2020 datasets to train the improved model and validate it online, respectively. Experimental results show that the DO‐UNet model can effectively improve the accuracy of brain tumor segmentation and has good segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郑顺利毕业完成签到,获得积分10
刚刚
lin完成签到,获得积分20
刚刚
1秒前
AAA完成签到,获得积分10
2秒前
阿佳发布了新的文献求助10
3秒前
科研通AI6应助changewoo采纳,获得10
3秒前
华仔应助大海采纳,获得10
5秒前
skywalker完成签到,获得积分10
5秒前
5秒前
6秒前
123456发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助hulahula采纳,获得10
7秒前
爆米花应助勤恳怀梦采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
希望天下0贩的0应助helo采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
怕黑犀牛应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
大力信封应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
北沐完成签到,获得积分10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Stella应助科研通管家采纳,获得30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
桐桐应助腦內小劇場采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057