Research on the magnetic resonance imaging brain tumor segmentation algorithm based on DO‐UNet

计算机科学 分割 卷积(计算机科学) 人工智能 图像分割 冗余(工程) 尺度空间分割 保险丝(电气) 算法 模式识别(心理学) 计算机视觉 人工神经网络 电气工程 工程类 操作系统
作者
Tongyuan Huang,Yao Liu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (1): 143-157 被引量:2
标识
DOI:10.1002/ima.22783
摘要

Abstract With the social and economic development and the improvement of people's living standards, smart medical care is booming, and medical image processing is becoming more and more popular in research, of which brain tumor segmentation is an important branch of medical image processing. However, the manual segmentation method of brain tumors requires a lot of time and effort from the doctor and has a great impact on the treatment of patients. In order to solve this problem, we propose a DO‐UNet model for magnetic resonance imaging brain tumor image segmentation based on attention mechanism and multi‐scale feature fusion to realize fully automatic segmentation of brain tumors. Firstly, we replace the convolution blocks in the original U‐Net model with the residual modules to prevent the gradient disappearing. Secondly, the multi‐scale feature fusion is added to the skip connection of U‐Net to fuse the low‐level features and high‐level features more effectively. In addition, in the decoding stage, we add an attention mechanism to increase the weight of effective information and avoid information redundancy. Finally, we replace the traditional convolution in the model with DO‐Conv to speed up the network training and improve the segmentation accuracy. In order to evaluate the model, we used the BraTS2018, BraTS2019, and BraTS2020 datasets to train the improved model and validate it online, respectively. Experimental results show that the DO‐UNet model can effectively improve the accuracy of brain tumor segmentation and has good segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhh发布了新的文献求助10
刚刚
情怀应助shaung yang采纳,获得10
1秒前
运动医学阿澜完成签到,获得积分10
2秒前
科研通AI2S应助闫伊森采纳,获得10
2秒前
2秒前
3秒前
3秒前
小杨完成签到 ,获得积分10
3秒前
Ashley完成签到,获得积分10
3秒前
3秒前
韶光与猫完成签到,获得积分10
3秒前
酷波er应助xiaoma采纳,获得10
4秒前
天天快乐应助ymh采纳,获得10
7秒前
安然发布了新的文献求助10
8秒前
后知后觉发布了新的文献求助20
9秒前
zho应助迅速醉冬采纳,获得50
9秒前
10秒前
10秒前
Marciu33发布了新的文献求助10
11秒前
hhh完成签到,获得积分20
11秒前
专注的帆布鞋完成签到 ,获得积分10
12秒前
12秒前
SciGPT应助MorningStar采纳,获得10
13秒前
阔达的秀发完成签到,获得积分10
13秒前
14秒前
何睦完成签到,获得积分10
14秒前
Weining发布了新的文献求助10
15秒前
小马甲应助dxtmm采纳,获得10
17秒前
陈军应助凳凳子采纳,获得10
18秒前
Hello应助雯雯子采纳,获得10
18秒前
ymh发布了新的文献求助10
18秒前
18秒前
Billy发布了新的文献求助10
19秒前
20秒前
从容芮应助zhuann采纳,获得10
20秒前
eudora发布了新的文献求助10
21秒前
立夏完成签到 ,获得积分10
23秒前
23秒前
独孤刘完成签到,获得积分20
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721