Encoding physics to learn reaction–diffusion processes

可解释性 动力系统理论 概化理论 计算机科学 偏微分方程 人工智能 机器学习 理论计算机科学 物理 数学 统计 量子力学
作者
Chengping Rao,Pu Ren,Qi Wang,Oral Büyüköztürk,Hao Sun,Yang Liu
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (7): 765-779 被引量:32
标识
DOI:10.1038/s42256-023-00685-7
摘要

Modelling complex spatiotemporal dynamical systems, such as reaction–diffusion processes, which can be found in many fundamental dynamical effects in various disciplines, has largely relied on finding the underlying partial differential equations (PDEs). However, predicting the evolution of these systems remains a challenging task for many cases owing to insufficient prior knowledge and a lack of explicit PDE formulation for describing the nonlinear process of the system variables. With recent data-driven approaches, it is possible to learn from measurement data while adding prior physics knowledge. However, existing physics-informed machine learning paradigms impose physics laws through soft penalty constraints, and the solution quality largely depends on a trial-and-error proper setting of hyperparameters. Here we propose a deep learning framework that forcibly encodes a given physics structure in a recurrent convolutional neural network to facilitate learning of the spatiotemporal dynamics in sparse data regimes. We show with extensive numerical experiments how the proposed approach can be applied to a variety of problems regarding reaction–diffusion processes and other PDE systems, including forward and inverse analysis, data-driven modelling and discovery of PDEs. We find that our physics-encoding machine learning approach shows high accuracy, robustness, interpretability and generalizability. Reaction–diffusion processes, which can be found in many fundamental spatiotemporal dynamical phenomena in chemistry, biology, geology, physics and ecology, can be modelled by partial differential equations (PDEs). Physics-informed deep learning approaches can accelerate the discovery of PDEs and Rao et al. improve interpretability and generalizability by strong encoding of the underlying physics structure in the neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
王三完成签到,获得积分10
2秒前
米玛吗完成签到,获得积分10
2秒前
ff完成签到,获得积分10
2秒前
3秒前
王三发布了新的文献求助10
5秒前
未来发布了新的文献求助10
5秒前
5秒前
独特的小吴完成签到,获得积分10
7秒前
7秒前
专注的问筠完成签到,获得积分10
8秒前
健壮的涑发布了新的文献求助10
9秒前
9秒前
GY发布了新的文献求助30
10秒前
11秒前
怡然云朵发布了新的文献求助10
12秒前
无奈柚子发布了新的文献求助10
13秒前
13秒前
大模型应助bewithtaq采纳,获得10
14秒前
14秒前
111驳回了传奇3应助
14秒前
肉好好吃发布了新的文献求助10
15秒前
建超发布了新的文献求助10
15秒前
欢喜的早晨完成签到,获得积分10
15秒前
16秒前
Orange应助咕嘟采纳,获得10
16秒前
干净傲霜发布了新的文献求助40
17秒前
18秒前
幸福的小刺猬完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
19秒前
易银辉发布了新的文献求助10
19秒前
NexusExplorer应助freshfire采纳,获得10
20秒前
20231125完成签到,获得积分10
21秒前
嗯嗯发布了新的文献求助10
21秒前
21秒前
serendipity完成签到,获得积分10
21秒前
科研通AI5应助缥缈灵松采纳,获得10
22秒前
今后应助狂野绿竹采纳,获得10
22秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704026
求助须知:如何正确求助?哪些是违规求助? 3253627
关于积分的说明 9884836
捐赠科研通 2965504
什么是DOI,文献DOI怎么找? 1626382
邀请新用户注册赠送积分活动 770700
科研通“疑难数据库(出版商)”最低求助积分说明 743028