浮游动物
浮游生物
独特性
营养物
李雅普诺夫函数
消光(光学矿物学)
数学
应用数学
浮游植物
平稳分布
概率密度函数
控制理论(社会学)
环境科学
统计物理学
生态学
统计
物理
数学分析
计算机科学
生物
马尔可夫链
非线性系统
人工智能
光学
控制(管理)
量子力学
作者
Miaomiao Gao,Daqing Jiang,Jieyu Ding
标识
DOI:10.1016/j.chaos.2023.113763
摘要
In this paper, we investigate the dynamics of a nutrient–phytoplankton–zooplankton model with nutrient recycling, in which the maximal nutrient uptake rate and maximal zooplankton ingestion rate are given by a continuous, mean-reverting, stochastic process. We first prove the existence and uniqueness of the global solution. Then conditions for the extinction of plankton are derived in two cases. Moreover, we establish sufficient condition for the existence of stationary distribution by constructing appropriate Lyapunov functions. It is worth noting that we further give the exact expression of density function around the positive equilibrium of deterministic system. Finally, some simulations are carried out to demonstrate our theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI