Predictive value of triple negative breast cancer based on DCE-MRI multi-phase full-volume ROI clinical radiomics model

医学 接收机工作特性 无线电技术 三阴性乳腺癌 磁共振成像 乳腺癌 乳房磁振造影 放射科 核医学 癌症 乳腺摄影术 内科学
作者
Xuan Qi,Wuling Wang,Shuya Pan,Guangzhu Liu,Liang Xia,Shaofeng Duan,Yongsheng He
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:65 (2): 173-184 被引量:4
标识
DOI:10.1177/02841851231215145
摘要

Background Since no studies compared the value of radiomics features of distinct phases of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting triple-negative breast cancer (TNBC). Purpose To identify the optimal phase of DCE-MRI for diagnosing TNBC and, in combination with clinical factors, to develop a clinical-radiomics model to well predict TNBC. Material and Methods This retrospective study included 158 patients with pathology-confirmed breast cancer, including 38 cases of TNBC. The patients were randomly divided into the training and validation set (7:3). Eight radiomics models were built based on eight DCE-MR phases, and their performances were evaluated using receiver operating characteristic curve (ROC) and DeLong's test. The Radscore derived from the best radiomics model was integrated with independent clinical risk factors to construct a clinical-radiomics predictive model, and evaluate its performance using ROC analysis, calibration, and decision curve analyses. Results WHO classification, margin, and T2-weighted (T2W) imaging signals were significantly correlated with TNBC and independent risk factors for TNBC ( P<0.05). The clinical model yielded areas under the curve (AUCs) of 0.867 and 0.843 in the training and validation sets, respectively. The radiomics model based on DCEphase7 achieved the highest efficacy, with an AUC of 0.818 and 0.777. The AUC of the clinical-radiomics model was 0.936 and 0.886 in the training and validation sets, respectively. The decision curve showed the clinical utility of the clinical-radiomics model. Conclusion The radiomics features of DCE-MRI had the potential to predict TNBC and could improve the performance of clinical risk factors for preoperative personalized prediction of TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来来来发布了新的文献求助10
刚刚
隐形荟完成签到 ,获得积分10
刚刚
刚刚
溪夕er完成签到,获得积分10
1秒前
细心的盼易完成签到,获得积分10
1秒前
fdwonder发布了新的文献求助10
1秒前
Quin完成签到,获得积分10
1秒前
2秒前
我是老大应助麋鹿采纳,获得30
2秒前
醒醒完成签到,获得积分10
2秒前
专心搞学术完成签到,获得积分10
2秒前
思源应助pbj采纳,获得10
2秒前
听白完成签到 ,获得积分10
3秒前
L3完成签到,获得积分10
3秒前
TTT发布了新的文献求助10
4秒前
4秒前
lbma完成签到,获得积分10
5秒前
一直成长完成签到,获得积分10
5秒前
5秒前
zhoujy完成签到,获得积分10
5秒前
保卫萝卜发布了新的文献求助10
5秒前
77完成签到,获得积分10
5秒前
話膤发布了新的文献求助10
6秒前
马里奥完成签到,获得积分10
6秒前
家伟发布了新的文献求助10
7秒前
orixero应助X1x1A0Q1采纳,获得10
7秒前
miemie完成签到,获得积分10
7秒前
meme发布了新的文献求助10
7秒前
cc完成签到,获得积分20
7秒前
自信安荷完成签到,获得积分10
7秒前
霸气小蜜蜂完成签到 ,获得积分10
8秒前
程新亮完成签到 ,获得积分10
8秒前
8秒前
Owen应助1111111采纳,获得10
10秒前
跳跃小伙完成签到 ,获得积分10
10秒前
10秒前
10秒前
研友_Z30Kz8完成签到,获得积分10
11秒前
旺仔发布了新的文献求助10
11秒前
xiaowei666完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259