Using POI and multisource satellite datasets for mainland China's population spatialization and spatiotemporal changes based on regional heterogeneity

空间化 地理 人口 背景(考古学) 地理空间分析 地图学 分布(数学) 城市化 中国大陆 自然地理学 中国 生态学 人口学 生物 数学分析 数学 考古 社会学 人类学
作者
Jinyu Zhang,Xuesheng Zhao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 169499-169499
标识
DOI:10.1016/j.scitotenv.2023.169499
摘要

Geospatial big data and remote sensing data are widely used in population spatialization studies. However, the relationship between them and population distribution has regional heterogeneity in different geographic contexts. It is necessary to improve data processing methods and spatialization models in areas with large geographical differences. We used land cover data to extract human activity, nighttime light and point-of-interest (POI) data to represent human activity intensity, and considered differences in geographical context to divide mainland China into northern, southern and western regions. We constructed random forest models to generate gridded population distribution datasets with a resolution of 500 m, and quantitatively evaluated the importance of auxiliary data in different geographical contexts. The street-level accuracy assessment showed that our population dataset is more accurate than WorldPop, with a higher R2 and smaller deviation. The improved datasets provided broad potential for exploring the spatial-temporal changes in grid-level population distribution in China from 2010 to 2020. The results indicated that the population density and settlement area have increased, and the overall pattern of population distribution has remained highly stable, but there are significant differences in population change patterns among cities with different urbanization processes. The importance of the ancillary data to the models varied significantly, with POI contributing the most to the southern region and the least to the western region. Moreover, POI had relatively less influence on model improvement in undeveloped areas. Our study could provide a reference for predicting social and economic spatialized data in different geographical context areas using POI and multisource satellite data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hl268完成签到,获得积分10
刚刚
刚刚
从容的皮皮虾完成签到 ,获得积分10
刚刚
刚刚
宝宝熊的熊宝宝完成签到,获得积分10
1秒前
刘艺娜发布了新的文献求助10
2秒前
2秒前
马森关注了科研通微信公众号
2秒前
君君欧发布了新的文献求助10
3秒前
iufan发布了新的文献求助10
3秒前
C2完成签到,获得积分10
4秒前
香蕉觅云应助柠檬要加冰采纳,获得10
4秒前
郝宝真发布了新的文献求助10
4秒前
大巧若拙完成签到,获得积分10
4秒前
Lone完成签到,获得积分10
4秒前
薰硝壤应助鸿鹄在天涯采纳,获得30
6秒前
gaoyue发布了新的文献求助10
6秒前
7秒前
彩虹完成签到,获得积分10
7秒前
9秒前
俊逸山芙应助含蓄的书双采纳,获得10
9秒前
星星完成签到 ,获得积分10
9秒前
Soleil完成签到 ,获得积分10
11秒前
qqy完成签到,获得积分10
12秒前
12秒前
12秒前
小蘑菇应助辣个男子采纳,获得10
12秒前
kkk发布了新的文献求助10
13秒前
刘艺娜完成签到,获得积分10
13秒前
lzr发布了新的文献求助10
13秒前
zhangdatong完成签到,获得积分10
14秒前
太叔捕完成签到,获得积分10
14秒前
14秒前
完美世界应助Violet采纳,获得10
14秒前
echo完成签到 ,获得积分10
15秒前
16秒前
花花完成签到 ,获得积分10
16秒前
善学以致用应助gaoyue采纳,获得10
16秒前
哦豁应助踏实的智宸采纳,获得10
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813