Optimization of shale gas fracturing parameters based on artificial intelligence algorithm

粒子群优化 油页岩 页岩气 石油工程 储层模拟 磁导率 算法 水力压裂 地质学 计算机科学 数学优化 数学 化学 古生物学 生物化学
作者
Shihao Qian,Zhenzhen Dong,Qianqian Shi,Wei Guo,Xiaowei Zhang,Zhaoxia Liu,Ling‐Jun Wang,Lei Wu,Tianyang Zhang,Weirong Li
出处
期刊:Artificial intelligence in geosciences [Elsevier]
卷期号:4: 95-110
标识
DOI:10.1016/j.aiig.2023.08.001
摘要

Resource-rich shale gas plays a pivotal role in new energy types. The key to scientifically and efficiently developing shale gas fields is to clarify the main factors that affect the production of shale gas wells. In this paper, according to the shale gas reservoir characteristic of the Fuling marine Longmaxi Formation, a single-well geological model was established using the reservoir numerical simulation software CMG. Then, 10,000 different reservoir models were randomly generated for different formation physical parameters, completion parameters, and fracturing parameters using the Monte Carlo method, and these 10,000 models were simulated numerically. The machine learning model uses a dataset of 10,000 different geological, completion, and fracturing parameters as input and 10,000 production curves as output. Multiple machine learning regression methods were used to train and test the dataset, and the optimal method (GBDT algorithm) was selected, and the accuracy R2 of the test set of the GBDT prediction model is 0.96. A fracturing parameter optimization workflow was constructed by combining a production prediction model with a particle swarm optimizer (PSO). The process can quickly optimize the fracturing parameters and predict the production for each time by targeting the cumulative gas production under different geological conditions. The optimized parameters are Fracture Spacing, Fracture Width, Intrinsic Permeability, Fracture Half-length, Langmuir Pressure, and Langmuir Volume. The initial predicted cumulative gas production was 4.59 × 108 m3, which was optimized to 4.90 × 108 m3. The proposed PSO-GBDT proxy model can instantly predict the production of shale gas wells with considerable accuracy, reliability, and efficiency, which is a vital tool for optimizing fracture design. This investigation provides a solid foundation for predicting the production of unconventional gas reservoirs and for parameter optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大方百招发布了新的文献求助10
1秒前
愉快草莓完成签到,获得积分10
1秒前
小瓶子发布了新的文献求助10
1秒前
2秒前
小颜发布了新的文献求助10
2秒前
大河发布了新的文献求助50
2秒前
3秒前
shaoshao完成签到,获得积分10
4秒前
钱浩发布了新的文献求助10
4秒前
成就映秋发布了新的文献求助10
4秒前
英姑应助OJL采纳,获得10
4秒前
NPC-CBI完成签到,获得积分10
5秒前
茉莉发布了新的文献求助10
5秒前
所所应助Ramalina采纳,获得10
5秒前
5秒前
Kitty完成签到,获得积分10
6秒前
6秒前
Ava应助夏冰雹采纳,获得10
7秒前
7秒前
疯度发布了新的文献求助10
7秒前
杭康完成签到,获得积分10
8秒前
HappyFlight9898应助24采纳,获得40
8秒前
嗯哼应助成就映秋采纳,获得20
9秒前
new_vision发布了新的文献求助10
9秒前
AO发布了新的文献求助10
9秒前
10秒前
10秒前
Lan发布了新的文献求助10
10秒前
11秒前
11秒前
贾世冰发布了新的文献求助10
12秒前
cloud发布了新的文献求助30
12秒前
打打应助小颜采纳,获得10
12秒前
跳跃仙人掌应助tracy10采纳,获得20
12秒前
茉莉完成签到,获得积分10
13秒前
英姑应助蔡可润采纳,获得10
13秒前
小瓶子完成签到,获得积分10
13秒前
14秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083