Optimization of shale gas fracturing parameters based on artificial intelligence algorithm

粒子群优化 油页岩 页岩气 石油工程 储层模拟 磁导率 算法 水力压裂 地质学 计算机科学 数学优化 数学 化学 古生物学 生物化学
作者
Shihao Qian,Zhenzhen Dong,Qianqian Shi,Wei Guo,Xiaowei Zhang,Zhaoxia Liu,Ling‐Jun Wang,Lei Wu,Tianyang Zhang,Weirong Li
出处
期刊:Artificial intelligence in geosciences [Elsevier]
卷期号:4: 95-110
标识
DOI:10.1016/j.aiig.2023.08.001
摘要

Resource-rich shale gas plays a pivotal role in new energy types. The key to scientifically and efficiently developing shale gas fields is to clarify the main factors that affect the production of shale gas wells. In this paper, according to the shale gas reservoir characteristic of the Fuling marine Longmaxi Formation, a single-well geological model was established using the reservoir numerical simulation software CMG. Then, 10,000 different reservoir models were randomly generated for different formation physical parameters, completion parameters, and fracturing parameters using the Monte Carlo method, and these 10,000 models were simulated numerically. The machine learning model uses a dataset of 10,000 different geological, completion, and fracturing parameters as input and 10,000 production curves as output. Multiple machine learning regression methods were used to train and test the dataset, and the optimal method (GBDT algorithm) was selected, and the accuracy R2 of the test set of the GBDT prediction model is 0.96. A fracturing parameter optimization workflow was constructed by combining a production prediction model with a particle swarm optimizer (PSO). The process can quickly optimize the fracturing parameters and predict the production for each time by targeting the cumulative gas production under different geological conditions. The optimized parameters are Fracture Spacing, Fracture Width, Intrinsic Permeability, Fracture Half-length, Langmuir Pressure, and Langmuir Volume. The initial predicted cumulative gas production was 4.59 × 108 m3, which was optimized to 4.90 × 108 m3. The proposed PSO-GBDT proxy model can instantly predict the production of shale gas wells with considerable accuracy, reliability, and efficiency, which is a vital tool for optimizing fracture design. This investigation provides a solid foundation for predicting the production of unconventional gas reservoirs and for parameter optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助通~采纳,获得10
1秒前
2秒前
尘林发布了新的文献求助30
2秒前
NexusExplorer应助科科研研up采纳,获得10
3秒前
大模型应助我要发十篇sci采纳,获得10
3秒前
正直草丛发布了新的文献求助10
4秒前
小蘑菇应助zxy采纳,获得20
4秒前
李爱国应助xs采纳,获得10
5秒前
5秒前
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
大有阳光应助科研通管家采纳,获得10
6秒前
quhayley应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
zh完成签到,获得积分10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
ZongzongXu发布了新的文献求助10
7秒前
8秒前
十七关注了科研通微信公众号
8秒前
chenyunxia应助通~采纳,获得10
8秒前
卓越完成签到,获得积分10
9秒前
yesand...完成签到,获得积分10
9秒前
啦啦啦关注了科研通微信公众号
9秒前
jiuyuan发布了新的文献求助10
9秒前
蔚岚影落完成签到,获得积分10
10秒前
小冥童鞋发布了新的文献求助10
10秒前
张张完成签到,获得积分10
10秒前
benben应助萤火虫采纳,获得10
10秒前
11秒前
12秒前
结实问筠完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919