亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and benchmarking of machine learning models to classify patients suitable for outpatient lower extremity joint arthroplasty

医学 逻辑回归 接收机工作特性 关节置换术 随机森林 机器学习 分类器(UML) 物理疗法 人工智能 预测建模 外科 计算机科学 内科学
作者
Haoyu Jia,Sierra Simpson,Varshini Sathish,Brian P. Curran,Alvaro A. Macias,Ruth S. Waterman,Rodney A. Gabriel
出处
期刊:Journal of Clinical Anesthesia [Elsevier]
卷期号:88: 111147-111147 被引量:6
标识
DOI:10.1016/j.jclinane.2023.111147
摘要

Performing hip or knee arthroplasty as an outpatient surgery has been shown to be operationally and financially beneficial for selected patients. By applying machine learning models to predict patients suitable for outpatient arthroplasty, health care systems can better utilize resources efficiently. The goal of this study was to develop predictive models for identifying patients likely to be discharged same-day following hip or knee arthroplasty.Model performance was assessed with 10-fold stratified cross-validation, evaluated over baseline determined by the proportion of eligible outpatient arthroplasty over sample size. The models used for classification were logistic regression, support vector classifier, balanced random forest, balanced bagging XGBoost classifier, and balanced bagging LightGBM classifier.The patient records were sampled from arthroplasty procedures at a single institution from October 2013 to November 2021.The electronic intake records of 7322 knee and hip arthroplasty patients were sampled for the dataset. After data processing, 5523 records were kept for model training and validation.None.The primary measures for the models were the F1-score, area under the receiver operating characteristic curve (ROCAUC), and area under the precision-recall curve. To measure feature importance, the SHapley Additive exPlanations value (SHAP) were reported from the model with the highest F1-score.The best performing classifier (balanced random forest classifier) achieved an F1-score of 0.347: an improvement of 0.174 over baseline and 0.031 over logistic regression. The ROCAUC for this model was 0.734. Using SHAP, the top determinant features of the model included patient sex, surgical approach, surgery type, and body mass index.Machine learning models may utilize electronic health records to screen arthroplasty procedures for outpatient eligibility. Tree-based models demonstrated superior performance in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pepsi完成签到,获得积分10
5秒前
8秒前
潇潇雨歇完成签到,获得积分10
12秒前
山语发布了新的文献求助10
13秒前
16秒前
脑洞疼应助晚棠采纳,获得10
19秒前
22秒前
星辰大海应助山语采纳,获得10
23秒前
胖橘发布了新的文献求助10
23秒前
amengptsd完成签到,获得积分10
27秒前
重医怪0发布了新的文献求助10
27秒前
31秒前
32秒前
39秒前
vsvsgo完成签到,获得积分20
40秒前
杳鸢应助科研通管家采纳,获得30
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
杳鸢应助科研通管家采纳,获得30
43秒前
43秒前
杳鸢应助科研通管家采纳,获得30
43秒前
杳鸢应助科研通管家采纳,获得30
43秒前
兼听则明应助科研通管家采纳,获得10
43秒前
杳鸢应助科研通管家采纳,获得30
43秒前
兼听则明应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
CipherSage应助ajun采纳,获得10
44秒前
俭朴的天曼完成签到,获得积分10
45秒前
无花果应助fossick2010采纳,获得10
45秒前
56秒前
57秒前
重医怪0发布了新的文献求助10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
憂xqc发布了新的文献求助10
1分钟前
1分钟前
nc5lou完成签到,获得积分20
1分钟前
fossick2010发布了新的文献求助10
1分钟前
憂xqc发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422815
求助须知:如何正确求助?哪些是违规求助? 3023198
关于积分的说明 8903739
捐赠科研通 2710571
什么是DOI,文献DOI怎么找? 1486572
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682330