亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-field rice panicles detection and growth stages recognition based on RiceRes2Net

最小边界框 人工智能 模式识别(心理学) 播种 计算机科学 农学 数学 生物 图像(数学)
作者
Suiyan Tan,Henghui Lu,Jie Yu,Maoyang Lan,Xihong Hu,Huiwen Zheng,Yingtong Peng,Yuwei Wang,Zehua Li,Long Qi,Xu Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107704-107704 被引量:20
标识
DOI:10.1016/j.compag.2023.107704
摘要

Accurate rice panicle detection and growth stages recognition are crucial steps in rice field phenotyping. However, conventional manual characterization of rice panicles is time consuming and labor intensive. In this study, a RiceRes2Net based on improved Cascade RCNN (Region-CNN) architecture was proposed to detect the rice panicle and recognize the growth stages under the complex field environment. RiceRes2Net first adopted the Res2Net network and Feature Pyramid Network (FPN) as the backbone network to generate and fuse multi-scale feature maps. Then, RiceRes2Net constituted a four IoU thresholds cascade RCNN to deal with multi-scale feature maps to give the target class prediction and coordinate regression of the bounding boxes. In addition, Soft non-maximum suppression (Soft NMS) and Generalized Intersection over Union (GIoU) loss function were also integrated into RiceRes2Net to better predict the bounding boxes of the occluded panicles. Datasets of the rice panicles were acquired by smartphone in two comprehensive field plot experiments under complex field background. Rice panicles differed in genotype, planting density, growing practices, planting season and growth stages, which constituted a comprehensive rice panicles phenotyping. The results showed that RiceRes2Net outperformed the traditional cascade RCNN in rice panicle detection, with average precision (AP) values of 96.8%, 93.7%, 82.4% at booting stage, heading stage, and filling stage, respectively. Furthermore, RiceRes2Net has a significant advantage in detecting the occlusion panicle thereby increase the accuracy. To test the robustness of RiceRes2Net, the counting results of RiceRes2Net was compared with the manual counting results with an independent test set. The RMSE values at three growth stages were 1.19, 2.56, and 3.13, respectively. In addition, the performance of the RiceRes2Net was compared to the widely used state-of-art deep learning models. The results showed that RiceRes2Net can learn a more representative set of features that helped better locate the rice panicles at three growth stages, and thus achieved better detection accuracy than the other deep learning models. In terms of panicle growth stages recognition, RiceRes2Net showed satisfactory results with high precision values of 99.83%, 99.34%, and 94.59% in recognition of booting stage, heading stage, and filling stage, respectively. The average accuracy of growth stages recognition was 96.42%. The overall results suggest that RiceRes2Net is a promising tool for detection of rice panicles and the growth stage, and has great potentials for field applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
58秒前
Jason完成签到 ,获得积分10
1分钟前
科研通AI5应助健忘的幻梅采纳,获得10
1分钟前
小白菜完成签到,获得积分10
1分钟前
1分钟前
QiongYin_123完成签到 ,获得积分10
1分钟前
jackone完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
完美世界应助cc采纳,获得10
2分钟前
2分钟前
cc发布了新的文献求助10
2分钟前
Arthur完成签到 ,获得积分10
3分钟前
3分钟前
慕青应助xc采纳,获得10
3分钟前
3分钟前
air233发布了新的文献求助10
3分钟前
xc发布了新的文献求助10
3分钟前
air233完成签到,获得积分10
3分钟前
3分钟前
3分钟前
莘莘发布了新的文献求助10
3分钟前
鹿茸与共发布了新的文献求助10
3分钟前
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
4分钟前
田様应助lalalatiancai采纳,获得10
4分钟前
务实书包完成签到,获得积分10
4分钟前
4分钟前
lalalatiancai发布了新的文献求助10
4分钟前
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
lalalatiancai完成签到,获得积分10
5分钟前
冬去春来完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Iso完成签到,获得积分10
7分钟前
gyr完成签到,获得积分10
7分钟前
tiantian完成签到,获得积分10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746109
求助须知:如何正确求助?哪些是违规求助? 3288998
关于积分的说明 10061615
捐赠科研通 3005273
什么是DOI,文献DOI怎么找? 1650147
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242