The kinetic mechanism of vortex-cavitation interaction in dual-chamber self-excited oscillation waterjets

物理 空化 涡流 机制(生物学) 振荡(细胞信号) 动能 机械 自激振荡 经典力学 量子力学 遗传学 生物
作者
Bowen Hou,Wenjiang Hou,Qi Gao,Zhichao Wang,Xiaofeng Guo,Zhenlong Fang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0252173
摘要

To explore the kinetic mechanism of vortex-cavitation in self-excited oscillation waterjets, large Eddy simulation was employed to simulate waterjets generated by a Helmholtz nozzle, an organ pipe nozzle, and a dual-chamber nozzle. The deconstruction from vortex energy to cavitation generation mechanisms was accomplished through proper orthogonal decomposition. The vorticity transport equation was used to investigate the relationship between the cavitation cloud in the cleavage state and each of the terms after the corresponding vortex decomposition. The results emphasize the importance of diffusion lip and downstream nozzle length in enhancing the jet capability of the dual-chamber nozzle. Furthermore, the excitation generated by the fluid after modulation through the Organ pipe nozzle significantly enhances the shear capacity of the dual-chamber nozzle jet. The interaction process between vortex-walls in the dual-chamber nozzle is described, with a particular focus on explaining the principle of self-excited oscillation generated by the organ pipe nozzle. The direction of shear vortex rotation represents the area of expansion in the cavitation cloud cluster. The end of the cavitation cloud exchanges energy with the surrounding water, and the expansion and disappearance of the cavitation cloud are directly related to the velocity state of the jet. The waterjets produced by the three types of nozzles have different shear forms to generate cavitation. Compared with waterjets from Helmholtz and organ pipe nozzles, the vapor volume fraction at the center of the dual-chamber nozzle jet increases by 56.3% and 77.6%, respectively, at a distance of 15 times the inlet diameter of the downstream chamber from the outlet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yoo完成签到 ,获得积分10
4秒前
凉拌冰阔落完成签到,获得积分10
7秒前
fabea完成签到,获得积分10
11秒前
CNY完成签到 ,获得积分10
12秒前
17秒前
rita_sun1969完成签到,获得积分10
17秒前
五月完成签到 ,获得积分10
19秒前
19秒前
wnll完成签到,获得积分10
20秒前
bobo_mj关注了科研通微信公众号
20秒前
wnll发布了新的文献求助10
23秒前
温馨完成签到 ,获得积分10
27秒前
畅快山兰完成签到 ,获得积分10
29秒前
觅柔完成签到,获得积分10
29秒前
29秒前
WD完成签到 ,获得积分10
30秒前
chhzz完成签到 ,获得积分10
32秒前
Bella完成签到 ,获得积分10
34秒前
Xiaoming完成签到,获得积分0
34秒前
cdercder应助Loik采纳,获得10
35秒前
cdercder应助觅柔采纳,获得10
36秒前
Only完成签到 ,获得积分10
37秒前
宋海成完成签到,获得积分10
40秒前
开放又亦完成签到 ,获得积分10
42秒前
韧迹完成签到 ,获得积分10
45秒前
47秒前
KKLD完成签到,获得积分10
50秒前
51秒前
yuyuyu发布了新的文献求助10
53秒前
cdercder应助科研通管家采纳,获得10
57秒前
可玩性完成签到 ,获得积分10
1分钟前
zx完成签到 ,获得积分10
1分钟前
西柚柠檬完成签到 ,获得积分10
1分钟前
清爽的火车完成签到 ,获得积分10
1分钟前
着急的千山完成签到 ,获得积分10
1分钟前
枫叶完成签到 ,获得积分10
1分钟前
科研小白完成签到,获得积分10
1分钟前
怡心亭完成签到 ,获得积分10
1分钟前
1分钟前
好好学习完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770524
求助须知:如何正确求助?哪些是违规求助? 3315488
关于积分的说明 10176558
捐赠科研通 3030553
什么是DOI,文献DOI怎么找? 1663023
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756705