Glutathione‐Driven Disassembly of Planar Organic Phototherapeutic Agents to Enhance Photodynamic‐Photothermal Therapy Performance for Nasopharyngeal Carcinoma

光热治疗 生物相容性 材料科学 光动力疗法 鼻咽癌 纳米技术 活性氧 纳米颗粒 谷胱甘肽 化学 有机化学 放射治疗 医学 生物化学 内科学 冶金
作者
Laiping Fang,Jianan Dai,Xuan Wang,Yike Tu,Shufang Li,Kuo He,Wenna Guo,Lifeng Hang,Jizhuang Wang,Yanzhao Diao,Wenjing Li,Wei Guo,Ziying Chen,Jin Wang,Shumei Li,Ping’an Ma,Guihua Jiang
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202409196
摘要

The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized. Notably, 4,8-Bis (5-phenylthiophen-2-yl)-6-(2-ethylhexyl)-[1,2,5] thiadiazole [3,4-F] benzotriazole (BTBT), which incorporates a benzene ring as the donor, exhibits the highest ROS generation and optimal photothermal conversion capability. To further augment the overall phototheranostic potential of BTBT NPs, a glutathione (GSH)-driven disassembly strategy is employed. This strategy not only alleviates the aggregation-caused quenching (ACQ) effect on ROS but also facilitates enhanced free molecular rotation. As a result, the ROS production sees a tenfold increase, and the photothermal conversion temperature rises by 8.3 °C, achieving a PCE of 77.03%. In summary, a versatile disassembly strategy is proposed that concurrently enhances the performance of both PDT and PTT in planar OPTAs, while also advancing the state-of-the-art in nasopharyngeal carcinoma (NPC) treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
高贵梦露发布了新的文献求助10
5秒前
7秒前
8秒前
GL发布了新的文献求助10
8秒前
乐乐应助如意枫叶采纳,获得10
8秒前
9秒前
史念薇发布了新的文献求助10
9秒前
xixi完成签到 ,获得积分10
9秒前
11秒前
青野发布了新的文献求助10
13秒前
16秒前
17秒前
高贵梦露完成签到,获得积分10
17秒前
19秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
如意枫叶发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
26秒前
27秒前
28秒前
赘婿应助GL采纳,获得10
28秒前
29秒前
29秒前
Archer宇完成签到,获得积分10
29秒前
狸花小喵发布了新的文献求助10
31秒前
科研废物完成签到 ,获得积分10
31秒前
32秒前
33秒前
34秒前
35秒前
37秒前
38秒前
潇湘雪月发布了新的文献求助10
39秒前
39秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136