Investigating the Signaling Mechanism of Consumer Reviews Toward Online Grocery Shopping

机制(生物学) 业务 杂货店购物 营销 广告 产业组织 认识论 哲学
作者
Yiru Wang,Xun Xu,Qingyun Zhu
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 10727-10739
标识
DOI:10.1109/tem.2024.3403938
摘要

Online grocery shopping is booming since COVID-19. Consumers often post reviews to reflect their shopping experiences. Based on signaling theory, we propose a conceptual framework to investigate the signaling mechanism of online grocery shoppers' review writing behaviors and how they act to signaling environment (i.e., COVID-19 pandemic). We find signal quality (review characteristics) affects signaling effectiveness (review helpfulness), and such effect is alleviated during the pandemic. We further evaluate review reliability using the alignment between observed signal (review characteristics) and intended signal (reviewer overall star rating). We find the review reliability significantly depends on various review characteristics—review content and linguistic characteristics—and these predictive relationships are stronger during the pandemic. Across the review content, we find signals relating to product delivery logistics such as delivery efficiency, last-mile connectivity, or packaging, are critical but under-investigated. Such signals may not directly correlate to the product value. However, their role in online delivery may become more significant and influential in the post-COVID era. In addition, we find signal inconsistency (discrepancy among review characteristics) affects consumers' promptness in posting subsequent reviews but is less significant during the pandemic. Our findings provide a holistic view of the signaling mechanisms in the online consumer community by revealing the varying signaling effects across the pandemic and business-as-usual and further facilitate online platform managers to better navigate the new normal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艺术家脾气完成签到,获得积分10
刚刚
1秒前
unicornmed发布了新的文献求助10
1秒前
可爱的函函应助茶艺如何采纳,获得10
2秒前
江知之完成签到 ,获得积分0
2秒前
2秒前
4秒前
刻苦问柳发布了新的文献求助10
4秒前
酷酷平卉完成签到 ,获得积分10
4秒前
星辰大海应助吴吴采纳,获得30
4秒前
JTB发布了新的文献求助10
4秒前
BILNQPL发布了新的文献求助10
4秒前
兮遥遥完成签到 ,获得积分10
5秒前
5秒前
5秒前
丰知然应助轩辕德地采纳,获得10
6秒前
7秒前
吨吨喝水关注了科研通微信公众号
7秒前
酷波er应助某只橘猫君采纳,获得10
7秒前
7秒前
stt发布了新的文献求助10
7秒前
7秒前
Ling完成签到,获得积分10
7秒前
TanFT完成签到,获得积分10
8秒前
笙歌自若发布了新的文献求助10
8秒前
8秒前
CipherSage应助积极的凌波采纳,获得10
9秒前
9秒前
烟花应助欣慰硬币采纳,获得10
9秒前
老大爷滴滴完成签到,获得积分10
9秒前
9秒前
9秒前
SciGPT应助LEMON采纳,获得10
10秒前
搜集达人应助叶飞荷采纳,获得10
10秒前
wxy完成签到,获得积分10
10秒前
11秒前
弄香完成签到,获得积分10
11秒前
gguc完成签到,获得积分10
11秒前
11秒前
无聊又夏完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762