Deep convolutional neural network-based identification and biological evaluation of MAO-B inhibitors

鉴定(生物学) 卷积神经网络 计算生物学 人工智能 计算机科学 化学 生物 植物
作者
Kushagra Kashyap,Girdhar Bhati,Shakil Ahmed,Mohammad Imran Siddiqi
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:: 136438-136438
标识
DOI:10.1016/j.ijbiomac.2024.136438
摘要

Parkinson's disease (PD) is one of the most prominent motor disorder of adult-onset dementia connected to memory and other cognitive abilities. Individuals with this vicious neurodegenerative condition tend to have an elevated expression of MAO-B that catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. This oxidative stress damages mitochondrial DNA and contributes to the progression of PD. To address this, we have developed a deep learning (DL)-based virtual screening protocol for the identification of promising MAO-B inhibitors using Convolutional neural network (ConvNet) based image classification technique by dealing with two unique kinds of image datasets associated with MACCS fingerprints. Following model building and prediction on the Maybridge library, our approach shortlisted the top 11 compounds at the end of molecular docking protocol. Further, the biological validation of the hits ideitified 4 compounds as promising MAO-B inhibitors. Among these, the compound RF02426 was found to have >50 % inhibition at 10 μM. Additionally, the study also underscored the utility of scaffold analysis as an effective way for evaluating the significance of structurally diverse compounds in data-driven investigations. We believe that our models are able to pick up diverse chemotype and this can be a starting scaffold for further structural optimization with medicinal chemistry efforts in order to improve their inhibition efficacy and be established as novel MAO-B inhibitors in the furture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Lim发布了新的文献求助10
3秒前
刻苦秋烟发布了新的文献求助20
3秒前
4秒前
无限青雪完成签到,获得积分10
5秒前
Hello应助小明采纳,获得10
5秒前
7秒前
stars发布了新的文献求助10
8秒前
无奈的寻芹应助小酸采纳,获得10
8秒前
277应助封虞采纳,获得10
9秒前
王肖完成签到,获得积分10
9秒前
顺利的伊发布了新的文献求助10
10秒前
贤惠的傲旋关注了科研通微信公众号
11秒前
12秒前
17秒前
MA发布了新的文献求助10
17秒前
17秒前
18秒前
顺利的伊完成签到,获得积分10
18秒前
标致冬日发布了新的文献求助10
18秒前
19秒前
怡然数据线完成签到,获得积分10
20秒前
orixero应助狂野砖头采纳,获得10
21秒前
Godric147发布了新的文献求助20
21秒前
长情墨镜完成签到,获得积分20
22秒前
23秒前
24秒前
25秒前
城东不言yi完成签到 ,获得积分10
25秒前
打打应助风趣小蜜蜂采纳,获得10
28秒前
29秒前
小明发布了新的文献求助10
29秒前
脑洞疼应助怡然数据线采纳,获得10
29秒前
lujiajia完成签到,获得积分10
29秒前
30秒前
34秒前
能干的大门完成签到,获得积分10
34秒前
34秒前
35秒前
西门吹雪9527完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301863
求助须知:如何正确求助?哪些是违规求助? 2936392
关于积分的说明 8477564
捐赠科研通 2610180
什么是DOI,文献DOI怎么找? 1425019
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646400