Generalized Split-Sample Test Interpretation Using Rainfall Runoff Information Gain

地表径流 口译(哲学) 水文学(农业) 样品(材料) 考试(生物学) 水文模型 环境科学 统计 计算机科学 地质学 数学 岩土工程 气候学 生态学 古生物学 化学 色谱法 生物 程序设计语言
作者
Aymen Ben Jaafar,Zoubeïda Bargaoui
出处
期刊:Journal of Hydrologic Engineering [American Society of Civil Engineers]
卷期号:25 (1) 被引量:4
标识
DOI:10.1061/(asce)he.1943-5584.0001868
摘要

Rainfall-runoff conceptual models are used largely for river discharge prediction, for waterworks design, and as support for water quality assessment. The generalized split-sample test (GSST) recently was recommended to analyze rainfall-runoff models’ performance. Moreover, it was found that parameter transfer may be conditioned to the precipitation conditions of the donor and receiver periods. This study focused on the generalized split-sample test results, and analyzed them in terms of the information gain between rainfall and runoff series. This issue was not considered before in GSST interpretation. Six small to moderate-sized basins (50–500 km2) in northern Tunisia were studied using the daily bucket with a bottom hole (BBH) model and the GSST calibration-validation approach. The mean absolute error and the Nash–Sutcliffe efficiency (NSE) were adopted to quantify model performance. The analysis suggests that the mean information gain (MIG) may be an indicator of the explored hydrological conditions of the assessment periods. In addition, results show that validation periods characterized by high MIG improved robustness, displaying low standard deviation of monthly NSE and enhanced accuracy, as shown by mean monthly NSE. The study of the effects of underlying physiographic factors suggests that the transfer from period to period is likely to be more robust for moderate-size basins than for small basins and that basin steepness tends to decrease the robustness of the transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
分风吹完成签到 ,获得积分10
刚刚
杜嘟嘟发布了新的文献求助10
1秒前
QinMengyao发布了新的文献求助10
2秒前
李繁蕊发布了新的文献求助10
3秒前
眼睛大的鑫磊完成签到,获得积分10
3秒前
雪白红紫完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
Fareth发布了新的文献求助10
5秒前
Air云完成签到,获得积分10
5秒前
PakhoPHD完成签到 ,获得积分10
5秒前
玉麒麟完成签到,获得积分0
6秒前
Angela完成签到,获得积分10
6秒前
希望天下0贩的0应助小吴采纳,获得10
6秒前
6秒前
lilac应助苹果煎饼采纳,获得10
7秒前
大模型应助百宝采纳,获得10
7秒前
怕黑砖头完成签到,获得积分10
8秒前
9秒前
9秒前
花玥鹿完成签到,获得积分10
9秒前
cybbbbbb完成签到,获得积分10
9秒前
咳咳完成签到,获得积分10
9秒前
10秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
10秒前
10秒前
Fareth完成签到,获得积分10
10秒前
领导范儿应助故意的绿竹采纳,获得10
10秒前
10秒前
复杂谷蓝完成签到 ,获得积分10
10秒前
11秒前
迟大猫应助于某人采纳,获得10
11秒前
qingkong发布了新的文献求助10
12秒前
12秒前
12秒前
细腻白柏完成签到,获得积分10
12秒前
12秒前
麦满分完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740