Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma

放射基因组学 医学 队列 无线电技术 深度学习 卷积神经网络 接收机工作特性 放化疗 人工智能 放射科 食管鳞状细胞癌 肿瘤科 机器学习 内科学 放射治疗 计算机科学
作者
Yihuai Hu,Chenyi Xie,Hong Yang,Joshua W. K. Ho,Jing Wen,Lujun Han,Ka-On Lam,Yhi Wong,Simon Law,K.W. Chiu,Varut Vardhanabhuti,Jianhua Fu
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:154: 6-13 被引量:107
标识
DOI:10.1016/j.radonc.2020.09.014
摘要

Background Deep learning is promising to predict treatment response. We aimed to evaluate and validate the predictive performance of the CT-based model using deep learning features for predicting pathologic complete response to neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC). Materials and methods Patients were retrospectively enrolled between April 2007 and December 2018 from two institutions. We extracted deep learning features of six pre-trained convolutional neural networks, respectively, from pretreatment CT images in the training cohort (n = 161). Support vector machine was adopted as the classifier. Validation was performed in an external testing cohort (n = 70). We assessed the performance using the area under the receiver operating characteristics curve (AUC) and selected an optimal model, which was compared with a radiomics model developed from the training cohort. A clinical model consisting of clinical factors only was also built for baseline comparison. We further conducted a radiogenomics analysis using gene expression profiles to reveal underlying biology associated with radiological prediction. Results The optimal model with features extracted from ResNet50 achieved an AUC and accuracy of 0.805 (95% CI, 0.696–0.913) and 77.1% (65.6%-86.3%) in the testing cohort, compared with 0.725 (0.605–0.846)) and 67.1% (54.9%-77.9%) for the radiomics model. All the radiological models showed better predictive performance than the clinical model. Radiogenomics analysis suggested a potential association mainly with WNT signaling pathway and tumor microenvironment. Conclusions The novel and noninvasive deep learning approach could provide efficient and accurate prediction of treatment response to nCRT in ESCC, and benefit clinical decision making of therapeutic strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼山雁发布了新的文献求助10
刚刚
文献查找发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
科研女仆发布了新的文献求助10
3秒前
南风应助小小的小小采纳,获得10
5秒前
5秒前
夏漆应助RUI采纳,获得20
7秒前
txyy发布了新的文献求助10
7秒前
田様应助多肉采纳,获得10
7秒前
8秒前
btutou完成签到,获得积分10
8秒前
默默雨竹发布了新的文献求助10
8秒前
呆萌的囧发布了新的文献求助10
9秒前
Jasper应助柳香芦采纳,获得10
10秒前
11秒前
11秒前
12秒前
小刘发布了新的文献求助10
12秒前
爆米花应助JT采纳,获得10
13秒前
Double_N发布了新的文献求助10
13秒前
13秒前
小陈陈完成签到,获得积分10
13秒前
花花完成签到 ,获得积分20
13秒前
14秒前
李爱国应助丰富的酸奶采纳,获得30
15秒前
15秒前
在水一方应助默默雨竹采纳,获得30
16秒前
大个应助科研通管家采纳,获得10
16秒前
毛豆应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
cocolu应助科研通管家采纳,获得30
17秒前
毛豆应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
快乐滑板应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444140
求助须知:如何正确求助?哪些是违规求助? 3040132
关于积分的说明 8980327
捐赠科研通 2728876
什么是DOI,文献DOI怎么找? 1496711
科研通“疑难数据库(出版商)”最低求助积分说明 691817
邀请新用户注册赠送积分活动 689386