清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma

放射基因组学 医学 队列 无线电技术 深度学习 卷积神经网络 接收机工作特性 放化疗 人工智能 放射科 食管鳞状细胞癌 肿瘤科 机器学习 内科学 放射治疗 计算机科学
作者
Yihuai Hu,Chenyi Xie,Hong Yang,Joshua W. K. Ho,Jing Wen,Lujun Han,Ka-On Lam,Yhi Wong,Simon Law,K.W. Chiu,Varut Vardhanabhuti,Jianhua Fu
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:154: 6-13 被引量:108
标识
DOI:10.1016/j.radonc.2020.09.014
摘要

Background Deep learning is promising to predict treatment response. We aimed to evaluate and validate the predictive performance of the CT-based model using deep learning features for predicting pathologic complete response to neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC). Materials and methods Patients were retrospectively enrolled between April 2007 and December 2018 from two institutions. We extracted deep learning features of six pre-trained convolutional neural networks, respectively, from pretreatment CT images in the training cohort (n = 161). Support vector machine was adopted as the classifier. Validation was performed in an external testing cohort (n = 70). We assessed the performance using the area under the receiver operating characteristics curve (AUC) and selected an optimal model, which was compared with a radiomics model developed from the training cohort. A clinical model consisting of clinical factors only was also built for baseline comparison. We further conducted a radiogenomics analysis using gene expression profiles to reveal underlying biology associated with radiological prediction. Results The optimal model with features extracted from ResNet50 achieved an AUC and accuracy of 0.805 (95% CI, 0.696–0.913) and 77.1% (65.6%-86.3%) in the testing cohort, compared with 0.725 (0.605–0.846)) and 67.1% (54.9%-77.9%) for the radiomics model. All the radiological models showed better predictive performance than the clinical model. Radiogenomics analysis suggested a potential association mainly with WNT signaling pathway and tumor microenvironment. Conclusions The novel and noninvasive deep learning approach could provide efficient and accurate prediction of treatment response to nCRT in ESCC, and benefit clinical decision making of therapeutic strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RenatoCai完成签到 ,获得积分10
3秒前
SH123完成签到 ,获得积分10
20秒前
oaoalaa完成签到 ,获得积分10
21秒前
wujuan完成签到 ,获得积分10
27秒前
...完成签到 ,获得积分10
40秒前
cdercder应助科研通管家采纳,获得10
40秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
shyxia完成签到 ,获得积分10
43秒前
易水完成签到 ,获得积分10
1分钟前
醉生梦死完成签到 ,获得积分10
1分钟前
tc完成签到 ,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
打打应助笑面客采纳,获得10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
alanbike完成签到,获得积分10
1分钟前
danli完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
夏日香气完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小贾爱喝冰美式完成签到 ,获得积分10
2分钟前
laoli2022完成签到,获得积分10
2分钟前
笑面客发布了新的文献求助10
2分钟前
高海龙完成签到 ,获得积分10
2分钟前
emxzemxz完成签到 ,获得积分10
2分钟前
Zhangfu完成签到,获得积分10
2分钟前
Maeve应助笑面客采纳,获得30
2分钟前
2分钟前
烟雨蒙蒙完成签到,获得积分10
2分钟前
Yuna96发布了新的文献求助10
2分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
自然归尘完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得30
2分钟前
cdercder应助科研通管家采纳,获得30
2分钟前
cdercder应助科研通管家采纳,获得30
2分钟前
曾经听寒完成签到,获得积分10
2分钟前
马登完成签到,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080150
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652307
邀请新用户注册赠送积分活动 787350
科研通“疑难数据库(出版商)”最低求助积分说明 752096