Multi-module Recurrent Convolutional Neural Network with Transformer Encoder for ECG Arrhythmia Classification

光谱图 计算机科学 变压器 卷积神经网络 人工智能 人工神经网络 编码器 模式识别(心理学) 自编码 循环神经网络 数据挖掘 工程类 操作系统 电气工程 电压
作者
Minh Duc Hoang Le,Vidhiwar Singh Rathour,Quang Sang Truong,Quan Mai,Patel Brijesh,Ngan Le
标识
DOI:10.1109/bhi50953.2021.9508527
摘要

The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RC-NNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) time-series module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F 1 score and 98.29% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Urusaiina完成签到,获得积分10
刚刚
用行舍藏完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
旺仔同学完成签到,获得积分10
4秒前
bkagyin应助窗外风雨阑珊采纳,获得10
4秒前
99发布了新的文献求助10
6秒前
aikeyan完成签到 ,获得积分10
6秒前
灰灰发布了新的文献求助10
7秒前
文6完成签到 ,获得积分10
9秒前
苏信怜完成签到,获得积分10
10秒前
细心的安双完成签到 ,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
Fiona完成签到 ,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
沉静胜完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
arniu2008应助科研通管家采纳,获得10
12秒前
小药童应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
13秒前
Yangyang完成签到,获得积分10
13秒前
小玉完成签到,获得积分10
13秒前
倪好完成签到,获得积分10
13秒前
LL完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
兔兔完成签到 ,获得积分10
15秒前
化学课die表完成签到 ,获得积分10
15秒前
菠萝蜜完成签到,获得积分10
15秒前
16秒前
woommoow完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071