已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-module Recurrent Convolutional Neural Network with Transformer Encoder for ECG Arrhythmia Classification

光谱图 计算机科学 变压器 卷积神经网络 人工智能 人工神经网络 编码器 模式识别(心理学) 自编码 循环神经网络 数据挖掘 工程类 操作系统 电气工程 电压
作者
Minh Duc Hoang Le,Vidhiwar Singh Rathour,Quang Sang Truong,Quan Mai,Patel Brijesh,Ngan Le
标识
DOI:10.1109/bhi50953.2021.9508527
摘要

The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RC-NNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) time-series module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F 1 score and 98.29% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
淡然的舞仙完成签到 ,获得积分10
3秒前
3秒前
健壮元绿完成签到 ,获得积分20
4秒前
风清扬应助完美的从波采纳,获得30
7秒前
Ahiterin发布了新的文献求助80
7秒前
yuko发布了新的文献求助10
7秒前
MoonYC完成签到,获得积分10
9秒前
12秒前
12秒前
13秒前
菠萝完成签到 ,获得积分10
14秒前
蜀黍完成签到 ,获得积分10
14秒前
choo完成签到,获得积分10
14秒前
Tales完成签到,获得积分10
14秒前
默默千亦完成签到 ,获得积分10
14秒前
hzx发布了新的文献求助10
17秒前
欣喜惜筠完成签到,获得积分10
18秒前
19秒前
20秒前
ZHOUCHENG发布了新的文献求助10
25秒前
网上飞完成签到,获得积分10
26秒前
29秒前
从容的柜子完成签到 ,获得积分10
29秒前
song发布了新的文献求助10
32秒前
35秒前
共享精神应助利物鸟贝拉采纳,获得10
35秒前
hzx完成签到,获得积分10
36秒前
1073980795发布了新的文献求助10
36秒前
37秒前
华仔应助BaBa采纳,获得10
38秒前
MoonYC发布了新的文献求助10
38秒前
默默洋葱发布了新的文献求助30
40秒前
可爱的函函应助莫里亚蒂采纳,获得10
41秒前
田様应助hzx采纳,获得10
45秒前
Ahiterin完成签到,获得积分10
46秒前
小二郎应助JhKe采纳,获得10
51秒前
丘比特应助幽梦挽歌采纳,获得10
52秒前
深情安青应助1073980795采纳,获得10
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976512
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203949
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555