Multi-module Recurrent Convolutional Neural Network with Transformer Encoder for ECG Arrhythmia Classification

光谱图 计算机科学 变压器 卷积神经网络 人工智能 人工神经网络 编码器 模式识别(心理学) 自编码 循环神经网络 数据挖掘 工程类 操作系统 电气工程 电压
作者
Minh Duc Hoang Le,Vidhiwar Singh Rathour,Quang Sang Truong,Quan Mai,Patel Brijesh,Ngan Le
标识
DOI:10.1109/bhi50953.2021.9508527
摘要

The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RC-NNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) time-series module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F 1 score and 98.29% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
GuMingyang完成签到,获得积分10
2秒前
smile完成签到,获得积分20
3秒前
4秒前
4秒前
zhangni发布了新的文献求助10
4秒前
cdercder应助凡凡采纳,获得50
7秒前
7秒前
害羞的败发布了新的文献求助10
7秒前
黄油包完成签到,获得积分10
7秒前
feb完成签到,获得积分10
7秒前
ho完成签到,获得积分10
8秒前
wlgjr发布了新的文献求助10
9秒前
欧阳静芙发布了新的文献求助10
9秒前
10秒前
ding应助成功发论文采纳,获得10
10秒前
11秒前
Inanopig完成签到,获得积分10
12秒前
桐桐应助电四拟采纳,获得10
13秒前
领导范儿应助李海平采纳,获得10
14秒前
15秒前
害羞的败完成签到,获得积分20
16秒前
斯文败类应助无限无心采纳,获得10
17秒前
ylj发布了新的文献求助10
17秒前
18秒前
优秀跳跳糖完成签到,获得积分20
19秒前
22秒前
23秒前
ylj完成签到,获得积分20
23秒前
23秒前
Heavenfalling完成签到,获得积分10
24秒前
24秒前
追寻鸵鸟完成签到,获得积分10
24秒前
wlgjr完成签到,获得积分10
24秒前
accept发布了新的文献求助30
25秒前
拉长的诗蕊完成签到,获得积分10
26秒前
26秒前
YBK发布了新的文献求助10
27秒前
追寻鸵鸟发布了新的文献求助10
28秒前
28秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700