Multi-module Recurrent Convolutional Neural Network with Transformer Encoder for ECG Arrhythmia Classification

光谱图 计算机科学 变压器 卷积神经网络 人工智能 人工神经网络 编码器 模式识别(心理学) 自编码 循环神经网络 数据挖掘 工程类 操作系统 电气工程 电压
作者
Minh Duc Hoang Le,Vidhiwar Singh Rathour,Quang Sang Truong,Quan Mai,Patel Brijesh,Ngan Le
标识
DOI:10.1109/bhi50953.2021.9508527
摘要

The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RC-NNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) time-series module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F 1 score and 98.29% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JN完成签到,获得积分10
3秒前
忐忑的书桃完成签到 ,获得积分10
4秒前
qaplay完成签到 ,获得积分0
4秒前
友好语风完成签到,获得积分10
5秒前
CLTTTt完成签到,获得积分10
6秒前
yk完成签到,获得积分10
8秒前
甜美的初蓝完成签到 ,获得积分10
12秒前
早安完成签到 ,获得积分10
16秒前
初昀杭完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
LIU完成签到 ,获得积分10
22秒前
24秒前
nianshu完成签到 ,获得积分0
25秒前
starwan完成签到 ,获得积分10
26秒前
松松发布了新的文献求助20
26秒前
hooddy123459发布了新的文献求助10
27秒前
wenhuanwenxian完成签到 ,获得积分10
31秒前
happy完成签到 ,获得积分10
35秒前
拾壹完成签到,获得积分10
43秒前
雪花完成签到,获得积分10
45秒前
清风完成签到 ,获得积分10
45秒前
雪花发布了新的文献求助10
49秒前
秀丽笑容完成签到 ,获得积分10
53秒前
江湖应助聪慧芷巧采纳,获得10
54秒前
量子星尘发布了新的文献求助10
55秒前
Rjy完成签到 ,获得积分10
1分钟前
性感母蟑螂完成签到 ,获得积分10
1分钟前
ruochenzu完成签到,获得积分10
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
天道酬勤完成签到,获得积分10
1分钟前
1分钟前
仁爱的谷南完成签到,获得积分10
1分钟前
雯雯完成签到 ,获得积分10
1分钟前
一路有你完成签到 ,获得积分10
1分钟前
1分钟前
ruochenzu发布了新的文献求助10
1分钟前
1分钟前
wanghao完成签到 ,获得积分10
1分钟前
图图发布了新的文献求助10
1分钟前
十三完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022