Multi-module Recurrent Convolutional Neural Network with Transformer Encoder for ECG Arrhythmia Classification

光谱图 计算机科学 变压器 卷积神经网络 人工智能 人工神经网络 编码器 模式识别(心理学) 自编码 循环神经网络 数据挖掘 工程类 操作系统 电气工程 电压
作者
Minh Duc Hoang Le,Vidhiwar Singh Rathour,Quang Sang Truong,Quan Mai,Patel Brijesh,Ngan Le
标识
DOI:10.1109/bhi50953.2021.9508527
摘要

The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RC-NNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) time-series module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F 1 score and 98.29% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
刚刚
鸣笛应助红炉点血采纳,获得10
2秒前
3秒前
3秒前
jarenthar完成签到 ,获得积分10
5秒前
从容的安南完成签到 ,获得积分10
8秒前
8秒前
远山发布了新的文献求助10
8秒前
润土发布了新的文献求助10
9秒前
逃跑的想表白的你猜完成签到,获得积分10
10秒前
TT小天完成签到,获得积分10
10秒前
夜尽天明应助红炉点血采纳,获得10
11秒前
11秒前
zsyf完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
平淡茈发布了新的文献求助10
14秒前
善学以致用应助湛刘佳采纳,获得10
15秒前
15秒前
浮游应助dali采纳,获得10
17秒前
我玩安琪拉无敌完成签到,获得积分10
17秒前
19秒前
20秒前
yiersan完成签到,获得积分10
21秒前
21秒前
在水一方应助舒心的初露采纳,获得30
22秒前
24秒前
天天快乐应助负责从丹采纳,获得10
25秒前
25秒前
25秒前
俍璟完成签到 ,获得积分10
25秒前
湛刘佳完成签到,获得积分20
26秒前
沈妤完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
走走发布了新的文献求助10
29秒前
30秒前
沈妤发布了新的文献求助10
30秒前
瘦瘦怀亦发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601334
求助须知:如何正确求助?哪些是违规求助? 4011026
关于积分的说明 12418353
捐赠科研通 3691054
什么是DOI,文献DOI怎么找? 2034817
邀请新用户注册赠送积分活动 1068116
科研通“疑难数据库(出版商)”最低求助积分说明 952689