Predicting heavy metal concentrations in soils and plants using field spectrophotometry

偏最小二乘回归 土壤水分 线性回归 校准 相关系数 决定系数 回归分析 土工试验 环境科学 化学 数学 分析化学(期刊) 土壤科学 矿物学 环境化学 统计
作者
Vahagn Muradyan,Garegin Tepanosyan,Shushanik Asmaryan,Lilit Sahakyan,Armen Saghatelyan,Timothy A. Warner
标识
DOI:10.1117/12.2279184
摘要

Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2~0.9, RPD~2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2~0.7, RPD~1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助fff采纳,获得10
刚刚
刚刚
万能图书馆应助nanmu采纳,获得50
1秒前
xiaolv完成签到,获得积分10
2秒前
MMWang发布了新的文献求助10
2秒前
2秒前
韩豆乐发布了新的文献求助10
5秒前
qqq发布了新的文献求助10
5秒前
5秒前
李书溪完成签到,获得积分10
6秒前
聪明元蝶发布了新的文献求助10
6秒前
6秒前
小马甲应助洁洁洁采纳,获得10
7秒前
虚幻又菡完成签到,获得积分10
7秒前
cyt9999发布了新的文献求助10
7秒前
Agu发布了新的文献求助10
7秒前
和谐青柏应助recognize采纳,获得10
8秒前
8秒前
dssdgbd完成签到,获得积分10
8秒前
buno应助Dml采纳,获得10
8秒前
9秒前
活泼的大船完成签到,获得积分10
9秒前
9秒前
L同学发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
xiaolv关注了科研通微信公众号
12秒前
天下迎春发布了新的文献求助10
12秒前
Agu完成签到,获得积分10
13秒前
13秒前
领导范儿应助钙帮弟子采纳,获得10
13秒前
13秒前
无极微光应助月流瓦采纳,获得20
14秒前
李绍进发布了新的文献求助10
14秒前
北斋完成签到,获得积分10
15秒前
wwwzy1996发布了新的文献求助10
15秒前
hbc8379发布了新的文献求助10
15秒前
聪明元蝶完成签到,获得积分10
17秒前
kk发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602687
求助须知:如何正确求助?哪些是违规求助? 4687724
关于积分的说明 14850920
捐赠科研通 4684930
什么是DOI,文献DOI怎么找? 2540020
邀请新用户注册赠送积分活动 1506783
关于科研通互助平台的介绍 1471445