Predicting heavy metal concentrations in soils and plants using field spectrophotometry

偏最小二乘回归 土壤水分 线性回归 校准 相关系数 决定系数 回归分析 土工试验 环境科学 化学 数学 分析化学(期刊) 土壤科学 矿物学 环境化学 统计
作者
Vahagn Muradyan,Garegin Tepanosyan,Shushanik Asmaryan,Lilit Sahakyan,Armen Saghatelyan,Timothy A. Warner
标识
DOI:10.1117/12.2279184
摘要

Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2~0.9, RPD~2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2~0.7, RPD~1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
共享精神应助萌酱采纳,获得10
1秒前
zxwz发布了新的文献求助10
1秒前
猪猪hero应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
Ava应助xuan采纳,获得10
1秒前
酷波er应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
Jared应助xuan采纳,获得10
1秒前
小羊完成签到 ,获得积分10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
田様应助xuan采纳,获得10
1秒前
独特的追命应助xuan采纳,获得10
1秒前
赘婿应助xuan采纳,获得10
1秒前
1秒前
hgm完成签到 ,获得积分10
2秒前
3秒前
Liu完成签到,获得积分10
3秒前
lmz发布了新的文献求助10
3秒前
山头虎发布了新的文献求助30
3秒前
香蕉觅云应助康师傅采纳,获得10
3秒前
烟花应助CMUSK采纳,获得10
4秒前
4秒前
SciGPT应助积极行天采纳,获得10
4秒前
4秒前
4秒前
文静曼安发布了新的文献求助10
5秒前
lzxlzxlzx发布了新的文献求助10
5秒前
浮游应助小巧的柚子采纳,获得10
6秒前
听雨秀才完成签到,获得积分20
6秒前
6秒前
6秒前
Leon_nomoreLess完成签到 ,获得积分10
6秒前
研友_Z30Kz8完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108