已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting heavy metal concentrations in soils and plants using field spectrophotometry

偏最小二乘回归 土壤水分 线性回归 校准 相关系数 决定系数 回归分析 土工试验 环境科学 化学 数学 分析化学(期刊) 土壤科学 矿物学 环境化学 统计
作者
Vahagn Muradyan,Garegin Tepanosyan,Shushanik Asmaryan,Lilit Sahakyan,Armen Saghatelyan,Timothy A. Warner
标识
DOI:10.1117/12.2279184
摘要

Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2~0.9, RPD~2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2~0.7, RPD~1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
努力搞科研完成签到,获得积分10
9秒前
10秒前
11秒前
wjp完成签到 ,获得积分10
13秒前
啊熙完成签到 ,获得积分10
13秒前
13秒前
颜卿完成签到 ,获得积分10
13秒前
plum完成签到,获得积分20
13秒前
本本完成签到 ,获得积分10
14秒前
LB发布了新的文献求助10
15秒前
16秒前
BowieHuang应助梅赛德斯奔驰采纳,获得10
18秒前
JamesPei应助Aroma采纳,获得10
18秒前
于冰清发布了新的文献求助10
19秒前
21秒前
和谐诗双完成签到 ,获得积分10
24秒前
时光发布了新的文献求助10
27秒前
28秒前
circlez19完成签到,获得积分10
28秒前
梅赛德斯奔驰完成签到,获得积分10
31秒前
gexzygg完成签到,获得积分0
31秒前
所所应助等乙天采纳,获得10
32秒前
琳666完成签到,获得积分10
32秒前
32秒前
吴迪完成签到,获得积分20
33秒前
Wiz111发布了新的文献求助10
34秒前
狂野的尔冬完成签到 ,获得积分10
35秒前
虚心海燕完成签到,获得积分10
36秒前
万邦德完成签到,获得积分10
39秒前
王小雨完成签到 ,获得积分10
39秒前
40秒前
123完成签到 ,获得积分10
41秒前
Wiz111完成签到,获得积分10
42秒前
Fxy完成签到 ,获得积分10
43秒前
走啊走完成签到,获得积分10
45秒前
46秒前
MrZ1完成签到,获得积分10
47秒前
Owen应助默默善愁采纳,获得10
49秒前
CipherSage应助默默善愁采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538412
求助须知:如何正确求助?哪些是违规求助? 4625561
关于积分的说明 14596411
捐赠科研通 4566146
什么是DOI,文献DOI怎么找? 2503005
邀请新用户注册赠送积分活动 1481293
关于科研通互助平台的介绍 1452563