亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting heavy metal concentrations in soils and plants using field spectrophotometry

偏最小二乘回归 土壤水分 线性回归 校准 相关系数 决定系数 回归分析 土工试验 环境科学 化学 数学 分析化学(期刊) 土壤科学 矿物学 环境化学 统计
作者
Vahagn Muradyan,Garegin Tepanosyan,Shushanik Asmaryan,Lilit Sahakyan,Armen Saghatelyan,Timothy A. Warner
标识
DOI:10.1117/12.2279184
摘要

Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2~0.9, RPD~2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2~0.7, RPD~1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OvO_4577完成签到,获得积分10
刚刚
脑洞疼应助满意的世界采纳,获得10
2秒前
汉堡包应助健忘的板凳采纳,获得10
7秒前
jcksonzhj完成签到,获得积分10
8秒前
761997580完成签到 ,获得积分10
10秒前
Criminology34举报wert求助涉嫌违规
12秒前
16秒前
22秒前
自然千山完成签到,获得积分10
23秒前
斯文败类应助张志超采纳,获得10
25秒前
26秒前
共享精神应助waomi采纳,获得10
27秒前
充电宝应助健忘的板凳采纳,获得10
28秒前
29秒前
31秒前
32秒前
老迟到的梦旋完成签到 ,获得积分10
35秒前
张志超发布了新的文献求助10
36秒前
C_完成签到,获得积分20
39秒前
39秒前
852应助张志超采纳,获得10
42秒前
一只小锦鲤完成签到 ,获得积分10
46秒前
斯文败类应助yang采纳,获得10
49秒前
BowieHuang应助科研通管家采纳,获得10
57秒前
田様应助科研通管家采纳,获得10
57秒前
ceeray23应助科研通管家采纳,获得10
57秒前
传奇3应助科研通管家采纳,获得10
57秒前
57秒前
小二郎应助科研通管家采纳,获得10
57秒前
烟花应助科研通管家采纳,获得10
57秒前
Leofar完成签到 ,获得积分10
1分钟前
爆米花应助余闻问采纳,获得10
1分钟前
Yuuuan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
余闻问发布了新的文献求助10
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
cryo完成签到 ,获得积分10
1分钟前
yang完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898