Predicting heavy metal concentrations in soils and plants using field spectrophotometry

偏最小二乘回归 土壤水分 线性回归 校准 相关系数 决定系数 回归分析 土工试验 环境科学 化学 数学 分析化学(期刊) 土壤科学 矿物学 环境化学 统计
作者
Vahagn Muradyan,Garegin Tepanosyan,Shushanik Asmaryan,Lilit Sahakyan,Armen Saghatelyan,Timothy A. Warner
标识
DOI:10.1117/12.2279184
摘要

Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2~0.9, RPD~2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2~0.7, RPD~1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
zdz发布了新的文献求助10
1秒前
2秒前
2秒前
华仔应助1234采纳,获得10
2秒前
星辰大海应助guard采纳,获得10
2秒前
怕孤独的云朵完成签到,获得积分10
3秒前
852应助西门子云采纳,获得10
3秒前
3秒前
薄荷加冰完成签到,获得积分10
3秒前
Stone完成签到,获得积分20
3秒前
orixero应助洁净的士晋采纳,获得10
4秒前
4秒前
丘比特应助Gilana采纳,获得10
4秒前
繁荣的豁给繁荣的豁的求助进行了留言
4秒前
慕青应助曲奇饼干采纳,获得10
5秒前
5秒前
ccc完成签到,获得积分10
5秒前
5秒前
饕邪完成签到,获得积分10
6秒前
飞雪完成签到,获得积分10
6秒前
今天也不想搬砖完成签到,获得积分10
6秒前
无私追命发布了新的文献求助10
7秒前
天天快乐应助zdz采纳,获得10
7秒前
ludong_0应助Ma采纳,获得10
7秒前
顾矜应助旦丁洋采纳,获得10
7秒前
sciscisci发布了新的文献求助10
7秒前
股价发布了新的文献求助10
7秒前
7秒前
qiqi发布了新的文献求助10
8秒前
缥缈傥发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
慕青应助认真代曼采纳,获得10
8秒前
老迟到的金鱼应助Rose采纳,获得20
9秒前
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130