亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting heavy metal concentrations in soils and plants using field spectrophotometry

偏最小二乘回归 土壤水分 线性回归 校准 相关系数 决定系数 回归分析 土工试验 环境科学 化学 数学 分析化学(期刊) 土壤科学 矿物学 环境化学 统计
作者
Vahagn Muradyan,Garegin Tepanosyan,Shushanik Asmaryan,Lilit Sahakyan,Armen Saghatelyan,Timothy A. Warner
标识
DOI:10.1117/12.2279184
摘要

Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2~0.9, RPD~2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2~0.7, RPD~1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
xu发布了新的文献求助10
3秒前
领导范儿应助MacTaylor_IF400采纳,获得10
5秒前
钦钦完成签到,获得积分20
5秒前
shuhaha完成签到,获得积分10
6秒前
温暖完成签到,获得积分20
7秒前
9秒前
11秒前
xu完成签到,获得积分20
13秒前
标致初柔发布了新的文献求助10
14秒前
zoulanfunny04发布了新的文献求助10
14秒前
ATEVYG完成签到 ,获得积分10
16秒前
20秒前
所所应助钦钦采纳,获得10
20秒前
MacTaylor_IF400完成签到,获得积分10
22秒前
YZChen完成签到,获得积分10
23秒前
23秒前
科研通AI6应助咦yiyi采纳,获得10
25秒前
Xtay完成签到 ,获得积分10
25秒前
shimly0101xx发布了新的文献求助10
26秒前
eric完成签到,获得积分20
28秒前
风中的碧空完成签到,获得积分10
28秒前
29秒前
32秒前
35秒前
William_l_c完成签到,获得积分10
37秒前
38秒前
39秒前
蛙蛙完成签到,获得积分10
40秒前
李爱国应助VDC采纳,获得30
41秒前
科研通AI2S应助钦钦采纳,获得10
42秒前
清风发布了新的文献求助10
44秒前
zoulanfunny04发布了新的文献求助10
44秒前
49秒前
Criminology34应助sofia采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913294
捐赠科研通 4747476
什么是DOI,文献DOI怎么找? 2549158
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049