Predicting heavy metal concentrations in soils and plants using field spectrophotometry

偏最小二乘回归 土壤水分 线性回归 校准 相关系数 决定系数 回归分析 土工试验 环境科学 化学 数学 分析化学(期刊) 土壤科学 矿物学 环境化学 统计
作者
Vahagn Muradyan,Garegin Tepanosyan,Shushanik Asmaryan,Lilit Sahakyan,Armen Saghatelyan,Timothy A. Warner
标识
DOI:10.1117/12.2279184
摘要

Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2~0.9, RPD~2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2~0.7, RPD~1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WTT完成签到,获得积分10
刚刚
李宗洋发布了新的文献求助10
1秒前
可爱的青枫完成签到,获得积分20
1秒前
神明完成签到 ,获得积分10
2秒前
2秒前
3秒前
phil发布了新的文献求助10
4秒前
4秒前
4秒前
小韩完成签到,获得积分10
5秒前
正直的曼香完成签到 ,获得积分10
5秒前
5秒前
6秒前
玄风举报尘曦求助涉嫌违规
6秒前
第二支羽毛完成签到,获得积分10
6秒前
俭朴凝旋应助WNL采纳,获得10
7秒前
GPTea应助田字格采纳,获得20
7秒前
LLCHEN完成签到 ,获得积分10
8秒前
liney发布了新的文献求助10
8秒前
ce发布了新的文献求助10
8秒前
10秒前
orange发布了新的文献求助30
10秒前
土豪的易文完成签到,获得积分10
10秒前
qing完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
S.完成签到,获得积分10
11秒前
治水发布了新的文献求助20
11秒前
yahonyoyoyo发布了新的文献求助20
11秒前
MOLLY完成签到 ,获得积分10
11秒前
负责的高烽完成签到,获得积分10
11秒前
11秒前
细心天德完成签到,获得积分10
12秒前
cxy完成签到 ,获得积分10
12秒前
落樱幻梦染星尘完成签到,获得积分10
13秒前
13秒前
14秒前
嬴炎发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758