材料科学
表征(材料科学)
电化学
阳极
吞吐量
锂(药物)
电池(电)
锂电池
薄膜
纳米技术
光电子学
化学工程
电极
计算机科学
物理化学
离子
有机化学
功率(物理)
工程类
医学
电信
化学
物理
量子力学
内分泌学
离子键合
无线
作者
Alexey O. Sanin,Jackson K. Flowers,Tobias H. Piotrowiak,Frederic Felsen,Leon Merker,Alfred Ludwig,Dominic Bresser,Helge S. Stein
标识
DOI:10.1002/aenm.202404961
摘要
Abstract High‐performance batteries need accelerated discovery and optimization of new anode materials. Herein, we explore the Si─Ge─Sn ternary alloy system as a candidate fast‐charging anode materials system by utilizing a scanning droplet cell (SDC) as an autonomous electrochemical characterization tool with the goal of subsequent upscaling. As the SDC is performing experiments sequentially, an exploration of the entire ternary space is unfeasible due to time constraints. Thus, closed‐loop optimization, guided by real‐time data analysis and sequential learning algorithms, is utilized to direct experiments. The lead material identified is scaled up to a coin cell to validate the findings from the autonomous millimeter‐scale thin‐film electrochemical experimentation. Explainable machine learning (ML) models incorporating data from high‐throughput Raman spectroscopy and X‐ray diffraction (XRD) are used to elucidate the effect of short and long‐range ordering on material performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI