清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection

计算机科学 异常检测 人工智能 卷积神经网络 模式识别(心理学) 监督学习 深度学习 块(置换群论) 变压器 计算机视觉 机器学习 人工神经网络 工程类 数学 电气工程 电压 几何学
作者
Neelu Madan,Nicolae-Cătălin Ristea,Radu Tudor Ionescu,Kamal Nasrollahi,Fahad Shahbaz Khan,Thomas B. Moeslund,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 525-542 被引量:34
标识
DOI:10.1109/tpami.2023.3322604
摘要

Anomaly detection has recently gained increasing attention in the field of computer vision, likely due to its broad set of applications ranging from product fault detection on industrial production lines and impending event detection in video surveillance to finding lesions in medical scans. Regardless of the domain, anomaly detection is typically framed as a one-class classification task, where the learning is conducted on normal examples only. An entire family of successful anomaly detection methods is based on learning to reconstruct masked normal inputs (e.g. patches, future frames, etc.) and exerting the magnitude of the reconstruction error as an indicator for the abnormality level. Unlike other reconstruction-based methods, we present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level. The proposed self-supervised block is extremely flexible, enabling information masking at any layer of a neural network and being compatible with a wide range of neural architectures. In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss. Furthermore, we show that our block is applicable to a wider variety of tasks, adding anomaly detection in medical images and thermal videos to the previously considered tasks based on RGB images and surveillance videos. We exhibit the generality and flexibility of SSMCTB by integrating it into multiple state-of-the-art neural models for anomaly detection, bringing forth empirical results that confirm considerable performance improvements on five benchmarks: MVTec AD, BRATS, Avenue, ShanghaiTech, and Thermal Rare Event.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
gszy1975发布了新的文献求助10
28秒前
兴尽晚回舟完成签到 ,获得积分10
1分钟前
研友_LOqqmZ完成签到 ,获得积分10
2分钟前
十二个完成签到,获得积分10
2分钟前
迅速的月光完成签到 ,获得积分10
2分钟前
糟糕的铁锤应助peng采纳,获得10
3分钟前
糟糕的铁锤应助peng采纳,获得10
3分钟前
5分钟前
俊逸的篮球完成签到,获得积分10
7分钟前
淡淡妙竹完成签到 ,获得积分10
7分钟前
Ava应助科研通管家采纳,获得10
7分钟前
优美的谷完成签到,获得积分10
8分钟前
9分钟前
2710660736完成签到,获得积分10
9分钟前
JamesPei应助2710660736采纳,获得10
9分钟前
9分钟前
2710660736发布了新的文献求助10
10分钟前
归海子轩完成签到 ,获得积分10
10分钟前
11分钟前
共享精神应助yuan采纳,获得10
11分钟前
李牛牛完成签到,获得积分10
12分钟前
13分钟前
yuan发布了新的文献求助10
13分钟前
细心的语蓉完成签到,获得积分10
13分钟前
14分钟前
vbnn完成签到 ,获得积分10
14分钟前
洛神完成签到 ,获得积分10
14分钟前
WerWu完成签到,获得积分10
15分钟前
wmuer完成签到 ,获得积分10
15分钟前
xiaofeiyan完成签到 ,获得积分10
16分钟前
张起灵完成签到 ,获得积分10
19分钟前
乐观的雁易完成签到 ,获得积分10
19分钟前
完美世界应助yun采纳,获得10
19分钟前
快乐小狗发布了新的文献求助10
21分钟前
斯文败类应助热心小松鼠采纳,获得10
22分钟前
李健应助热心小松鼠采纳,获得30
22分钟前
深情安青应助热心小松鼠采纳,获得10
22分钟前
香蕉觅云应助热心小松鼠采纳,获得10
22分钟前
领导范儿应助热心小松鼠采纳,获得10
22分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268760
求助须知:如何正确求助?哪些是违规求助? 2908238
关于积分的说明 8344900
捐赠科研通 2578564
什么是DOI,文献DOI怎么找? 1402206
科研通“疑难数据库(出版商)”最低求助积分说明 655352
邀请新用户注册赠送积分活动 634490