亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Reinforcement Learning for Dynamic Opportunistic Maintenance of Multi-Component Systems With Load Sharing

强化学习 组分(热力学) 计算机科学 时间范围 最优化问题 数学优化 可靠性工程 工程类 人工智能 算法 数学 热力学 物理
作者
Chen Zhang,Yan‐Fu Li,David W. Coit
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:72 (3): 863-877 被引量:22
标识
DOI:10.1109/tr.2022.3197322
摘要

Opportunistic maintenance (OM), which shows its superiority on complex multi-component systems by integrating the maintenance activities of multiple components to reduce the maintenance cost, has been widely studied over the past decade. To our knowledge, most of the existing OM works are developed based on fixed maintenance thresholds without fully utilizing the health state of the multi-component system. This article presents an OM optimization problem of multi-component systems with load sharing, solved by a modified proximal policy optimization approach based on deep reinforcement learning algorithm. The load sharing effect is reflected in the hazard rate function, which further changes the failure probability of the components. Meanwhile, the health states can be recovered by executing imperfect maintenance and corrective maintenance. The optimization problem is formulated as an infinite-horizon MDP with mixed discrete and continuous state and action space to maximize the total discounted reward, taking into account the system reliability and the maintenance cost. The difficulty caused by the mixed action space is solved by designing a parameterized action space structure and multi-task reinforcement learning framework. The effectiveness of the proposed algorithm is tested on a four-component system and a real-world scenario configured with the high-pressure feedwater heater system in the nuclear power plant. The results show that the performance of the algorithm is stable when facing large-scale problems. The algorithm proposed in this study also contributes to the imperfect maintenance optimization with state-of-the-art optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮光应助魔幻白羊采纳,获得10
9秒前
10秒前
34秒前
阿里发布了新的文献求助10
46秒前
54秒前
haidan完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助白柏采纳,获得10
1分钟前
1分钟前
1分钟前
白柏发布了新的文献求助10
1分钟前
负责的寒梅完成签到 ,获得积分10
1分钟前
难过的凌兰完成签到,获得积分10
1分钟前
1分钟前
若水完成签到,获得积分10
1分钟前
1分钟前
若水发布了新的文献求助50
1分钟前
1分钟前
2分钟前
科目三应助半夏采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
半夏发布了新的文献求助10
2分钟前
2分钟前
怕孤独的访梦完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助150
2分钟前
3分钟前
Demi_Ming完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
学不完了完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
科研通AI5应助焦糖玛奇朵采纳,获得10
5分钟前
5分钟前
Ldq应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064550
求助须知:如何正确求助?哪些是违规求助? 4287522
关于积分的说明 13359118
捐赠科研通 4106096
什么是DOI,文献DOI怎么找? 2248388
邀请新用户注册赠送积分活动 1253922
关于科研通互助平台的介绍 1185281