Deep Reinforcement Learning for Dynamic Opportunistic Maintenance of Multi-Component Systems With Load Sharing

强化学习 组分(热力学) 计算机科学 时间范围 最优化问题 数学优化 可靠性工程 工程类 人工智能 算法 数学 物理 热力学
作者
Chen Zhang,Yan‐Fu Li,David W. Coit
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:72 (3): 863-877 被引量:22
标识
DOI:10.1109/tr.2022.3197322
摘要

Opportunistic maintenance (OM), which shows its superiority on complex multi-component systems by integrating the maintenance activities of multiple components to reduce the maintenance cost, has been widely studied over the past decade. To our knowledge, most of the existing OM works are developed based on fixed maintenance thresholds without fully utilizing the health state of the multi-component system. This article presents an OM optimization problem of multi-component systems with load sharing, solved by a modified proximal policy optimization approach based on deep reinforcement learning algorithm. The load sharing effect is reflected in the hazard rate function, which further changes the failure probability of the components. Meanwhile, the health states can be recovered by executing imperfect maintenance and corrective maintenance. The optimization problem is formulated as an infinite-horizon MDP with mixed discrete and continuous state and action space to maximize the total discounted reward, taking into account the system reliability and the maintenance cost. The difficulty caused by the mixed action space is solved by designing a parameterized action space structure and multi-task reinforcement learning framework. The effectiveness of the proposed algorithm is tested on a four-component system and a real-world scenario configured with the high-pressure feedwater heater system in the nuclear power plant. The results show that the performance of the algorithm is stable when facing large-scale problems. The algorithm proposed in this study also contributes to the imperfect maintenance optimization with state-of-the-art optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
困困困困发布了新的文献求助10
刚刚
小黄包子完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
2秒前
zaizai完成签到,获得积分10
2秒前
上官若男应助tuyfytjt采纳,获得10
2秒前
研友_Z60ObL完成签到,获得积分10
3秒前
小蘑菇应助欢呼尔烟采纳,获得10
3秒前
周宇飞发布了新的文献求助20
3秒前
败者食尘完成签到,获得积分10
4秒前
科目三应助nan采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
彭于晏应助mumu采纳,获得10
4秒前
李爱国应助Fareth采纳,获得10
5秒前
聪慧小霜应助zfcaabbcc采纳,获得10
5秒前
momo发布了新的文献求助10
5秒前
申左一发布了新的文献求助10
5秒前
ZYH发布了新的文献求助10
6秒前
KK发布了新的文献求助10
6秒前
斯文败类应助shusen采纳,获得10
6秒前
6秒前
lincool完成签到,获得积分10
7秒前
ldkl应助收手吧大哥采纳,获得30
7秒前
完美世界应助haoqisheng采纳,获得10
7秒前
小马甲应助郑zz采纳,获得10
8秒前
魔幻小蚂蚁完成签到,获得积分10
8秒前
8秒前
xzp发布了新的文献求助10
8秒前
YU关注了科研通微信公众号
8秒前
8秒前
cw发布了新的文献求助10
8秒前
8秒前
之之完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
tty发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562