Improving urban tree species classification by deep-learning based fusion of digital aerial images and LiDAR

激光雷达 数字表面 地理 树(集合论) 遥感 特征(语言学) 卷积神经网络 环境科学 人工智能 计算机科学 数学 语言学 数学分析 哲学
作者
Matheus Pinheiro Ferreira,Daniel Rodrigues dos Santos,Felipe Ferrari,Luiz Carlos Teixeira Coelho Filho,Gabriela Barbosa Martins,Raul Queiroz Feitosa
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:94: 128240-128240 被引量:1
标识
DOI:10.1016/j.ufug.2024.128240
摘要

Accurate information on tree species distribution in urban areas can offer insights into how street trees provide ecosystem services, such as air pollution mitigation and surface cooling. This article presents a method to improve tree species classification in a tropical urban area using LiDAR-derived structural properties of individual tree crowns (ITCs) and digital aerial images. We extracted four LiDAR features, including surface normals of tree leaves, intensity, tree height, and leaf area index (LAI). We conducted two experiments: In the first, we trained encoder-decoder convolutional neural networks using a stack of optical bands and one LiDAR feature at a time. In the second, we developed an optical-LiDAR fusion strategy that combined feature maps from two encoder-decoder networks. One network was trained with optical bands only, while the other was trained with the LiDAR features that improved classification accuracy in the first experiment. Our experiment results demonstrated the usefulness of surface normals and intensity in discriminating among tree species. We found that the optical-LiDAR fusion strategy increased the average F1-score by 12.6 percentage points compared to only optical bands. We also employed the new segment anything (SAM) model to automatically delineate ITCs. SAM outlined ITCs with a boundary F1-score of 98%. The SAM-delineated ITCs were used to improve raw model predictions and produce reliable species maps. This study contributes to mapping and monitoring urban tree species in tropical areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三青呀完成签到,获得积分10
1秒前
缓慢的饼干完成签到,获得积分10
1秒前
斯文败类应助XYWang采纳,获得10
1秒前
2秒前
Sidney发布了新的文献求助20
3秒前
4秒前
不爱胡椒完成签到,获得积分10
4秒前
Lee完成签到,获得积分10
5秒前
liuxshan完成签到,获得积分10
5秒前
天天快乐应助afrex采纳,获得10
6秒前
Lxx完成签到,获得积分20
6秒前
6秒前
7秒前
领子完成签到,获得积分10
7秒前
7秒前
YT完成签到,获得积分10
7秒前
天天快乐应助uuuu采纳,获得10
8秒前
wwl发布了新的文献求助10
9秒前
9秒前
小马甲应助九龙飞翔采纳,获得10
9秒前
12秒前
13秒前
yanjiusheng完成签到,获得积分10
14秒前
天真少年完成签到,获得积分10
15秒前
lalala发布了新的文献求助10
16秒前
文俊辉光日新完成签到,获得积分10
17秒前
18秒前
18秒前
Caili完成签到,获得积分10
20秒前
善良的冷梅完成签到,获得积分10
20秒前
哎呦魏完成签到,获得积分20
21秒前
希望天下0贩的0应助wwl采纳,获得10
21秒前
CipherSage应助Yippee采纳,获得10
21秒前
21秒前
TAN应助标致的醉冬采纳,获得10
22秒前
22秒前
齐天大圣完成签到,获得积分10
22秒前
25秒前
25秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155652
求助须知:如何正确求助?哪些是违规求助? 2806900
关于积分的说明 7870998
捐赠科研通 2465170
什么是DOI,文献DOI怎么找? 1312153
科研通“疑难数据库(出版商)”最低求助积分说明 629913
版权声明 601892