期刊:RSC Advances [The Royal Society of Chemistry] 日期:2014-07-30卷期号:4 (70): 36996-36996被引量:45
标识
DOI:10.1039/c4ra05076b
摘要
Graphene network (GN) was synthesized by a two-step chemical vapour deposition (CVD) method, involving the thermal annealing sputter-coated Cu film to form a Cu network by annealing for CVD deposition of graphene onto the Cu network catalyst. The resultant graphene network was transferred onto a flexible and transparent polymer (e.g., PDMS) substrate while maintaining its porous structure and integrated interconnection, providing both good optical transparency (e.g., transmittance of 86% at 550 nm wavelength) and mechanical flexibility. Flexible and transparent all-solid-state supercapacitors based on the newly-developed graphene network were fabricated to exhibit an area specific capacitance of 4.2 μF cm−2 at a discharge current of 0.1 μA with a high optical transparency (transmittance of 84%), which outperforms devices based on uniform multi-layer graphene sheet.