化学
结晶学
等结构
十二面体
三角棱镜分子几何学
核磁共振波谱
分子
齿合度
配体(生物化学)
吸收光谱法
配位几何学
核磁共振谱数据库
晶体结构
立体化学
氢键
谱线
八面体
量子力学
生物化学
受体
物理
有机化学
天文
作者
Deepak Bansal,Peter Kaden,Michael Patzschke,Juliane März,Moritz Schmidt
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2022-06-23
卷期号:61 (27): 10509-10520
被引量:4
标识
DOI:10.1021/acs.inorgchem.2c01405
摘要
Six mononuclear tetravalent actinide complexes (1-6) have been synthesized using a new Schiff base ligand 2-methoxy-6-(((2-methyl-1-(pyridin-2-yl)propyl)imino)methyl)phenol (HLpr). The HLpr is treated with tetravalent actinide elements in varied stoichiometries to afford mononuclear 1:1 complexes [MCl3-Lpr·nTHF] (1-3) and 2:1 complexes [MCl2-L2pr] (4-6) (M = Th4+ (1 and 4), U4+ (2 and 5), and Np4+ (3 and 6)). All complexes are characterized using different analytical techniques such as IR, NMR, and absorption spectroscopy as well as crystallography. UV-vis spectroscopy revealed more red-shifted absorption spectra for 2:1 complexes as compared to 1:1 complexes. 1H NMR of Th(IV) complexes exhibit diamagnetic spectra, whereas U(IV) and Np(IV) complexes revealed paramagnetically shifted 1H NMR. Interestingly, NMR signals are paramagnetically shifted between -70 and 40 ppm in 2 and 3 but are confined within -35 to 25 ppm in 2:1 complexes 5 and 6. Single-crystal structures for 1:1 complexes revealed an eight-coordinated Th(IV) complex (1) and seven-coordinated U(IV) (2) and Np(IV) (3) complexes. However, all 2:1 complexes 4-6 were isolated as eight-coordinated isostructural molecules. The geometry around the Th4+ center in 1 is found to be trigonal dodecahedral and capped trigonal prismatic around U(IV) and Np(IV) centers in 2 and 3, respectively. However, An4+ centers in 2:1 complexes are present in dodecahedral geometry. Importantly, 2:1 complexes exhibit increased bond distances in comparison to their 1:1 counterparts as well as interesting bond modulation with respect to ionic radii of An(IV) centers. Cyclic voltammetry displays an increased oxidation potential of the ligand by 300-500 mV, after coordination with An4+. CV studies indicate Th(IV)/Th(II) reduction beyond -2.3 V, whereas attempts were made to identify redox potentials for U(IV) and Np(IV) centers. Spectroscopic binding studies reveal that complex stability in 1:1 stoichiometry follows the order Th4+ ≈ U4+ > Np4+.
科研通智能强力驱动
Strongly Powered by AbleSci AI