医学
钙化积分
放射科
皮尔逊积矩相关系数
相关性
计算机断层血管造影
核医学
血管造影
冠状动脉钙
计算机断层摄影术
人工智能
统计
几何学
数学
计算机科学
作者
Dezhi Mu,Junjie Bai,Wenping Chen,Hongming Yu,Jing Liang,Kejie Yin,Hui Li,Qing Zhao,Kelei He,Haoyu Yang,Jinyao Zhang,Youbing Yin,Hunter W. McLellan,U. Joseph Schoepf,Bing Zhang
出处
期刊:Radiology
[Radiological Society of North America]
日期:2021-11-23
卷期号:302 (2): 309-316
被引量:36
标识
DOI:10.1148/radiol.2021211483
摘要
Background Separate noncontrast CT to quantify the coronary artery calcium (CAC) score often precedes coronary CT angiography (CTA). Quantifying CAC scores directly at CTA would eliminate the additional radiation produced at CT but remains challenging. Purpose To quantify CAC scores automatically from a single CTA scan. Materials and Methods In this retrospective study, a deep learning method to quantify CAC scores automatically from a single CTA scan was developed on training and validation sets of 292 patients and 73 patients collected from March 2019 to July 2020. Virtual noncontrast scans obtained with a spectral CT scanner were used to develop the algorithm to alleviate tedious manual annotation of calcium regions. The proposed method was validated on an independent test set of 240 CTA scans collected from three different CT scanners from August 2020 to November 2020 using the Pearson correlation coefficient, the coefficient of determination, or r2, and the Bland-Altman plot against the semiautomatic Agatston score at noncontrast CT. The cardiovascular risk categorization performance was evaluated using weighted κ based on the Agatston score (CAC score risk categories: 0-10, 11-100, 101-400, and >400). Results Two hundred forty patients (mean age, 60 years ± 11 [standard deviation]; 146 men) were evaluated. The positive correlation between the automatic deep learning CTA and semiautomatic noncontrast CT CAC score was excellent (Pearson correlation = 0.96; r2 = 0.92). The risk categorization agreement based on deep learning CTA and noncontrast CT CAC scores was excellent (weighted κ = 0.94 [95% CI: 0.91, 0.97]), with 223 of 240 scans (93%) categorized correctly. All patients who were miscategorized were in the direct neighboring risk groups. The proposed method's differences from the noncontrast CT CAC score were not statistically significant with regard to scanner (P = .15), sex (P = .051), and section thickness (P = .67). Conclusion A deep learning automatic calcium scoring method accurately quantified coronary artery calcium from CT angiography images and categorized risk. © RSNA, 2021 See also the editorial by Goldfarb and Cao et al in this issue.
科研通智能强力驱动
Strongly Powered by AbleSci AI