Calcium Scoring at Coronary CT Angiography Using Deep Learning

医学 钙化积分 放射科 皮尔逊积矩相关系数 相关性 计算机断层血管造影 核医学 血管造影 冠状动脉钙 计算机断层摄影术 人工智能 统计 几何学 数学 计算机科学
作者
Dezhi Mu,Junjie Bai,Wenping Chen,Hongming Yu,Jing Liang,Kejie Yin,Hui Li,Qing Zhao,Kelei He,Haoyu Yang,Jinyao Zhang,Youbing Yin,Hunter W. McLellan,U. Joseph Schoepf,Bing Zhang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (2): 309-316 被引量:36
标识
DOI:10.1148/radiol.2021211483
摘要

Background Separate noncontrast CT to quantify the coronary artery calcium (CAC) score often precedes coronary CT angiography (CTA). Quantifying CAC scores directly at CTA would eliminate the additional radiation produced at CT but remains challenging. Purpose To quantify CAC scores automatically from a single CTA scan. Materials and Methods In this retrospective study, a deep learning method to quantify CAC scores automatically from a single CTA scan was developed on training and validation sets of 292 patients and 73 patients collected from March 2019 to July 2020. Virtual noncontrast scans obtained with a spectral CT scanner were used to develop the algorithm to alleviate tedious manual annotation of calcium regions. The proposed method was validated on an independent test set of 240 CTA scans collected from three different CT scanners from August 2020 to November 2020 using the Pearson correlation coefficient, the coefficient of determination, or r2, and the Bland-Altman plot against the semiautomatic Agatston score at noncontrast CT. The cardiovascular risk categorization performance was evaluated using weighted κ based on the Agatston score (CAC score risk categories: 0-10, 11-100, 101-400, and >400). Results Two hundred forty patients (mean age, 60 years ± 11 [standard deviation]; 146 men) were evaluated. The positive correlation between the automatic deep learning CTA and semiautomatic noncontrast CT CAC score was excellent (Pearson correlation = 0.96; r2 = 0.92). The risk categorization agreement based on deep learning CTA and noncontrast CT CAC scores was excellent (weighted κ = 0.94 [95% CI: 0.91, 0.97]), with 223 of 240 scans (93%) categorized correctly. All patients who were miscategorized were in the direct neighboring risk groups. The proposed method's differences from the noncontrast CT CAC score were not statistically significant with regard to scanner (P = .15), sex (P = .051), and section thickness (P = .67). Conclusion A deep learning automatic calcium scoring method accurately quantified coronary artery calcium from CT angiography images and categorized risk. © RSNA, 2021 See also the editorial by Goldfarb and Cao et al in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
liaomr发布了新的文献求助10
刚刚
nieinei发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
乐乐乐乐乐乐应助Felix采纳,获得10
5秒前
6秒前
ruoxin发布了新的文献求助10
6秒前
十三完成签到,获得积分10
6秒前
诚心的寻凝完成签到,获得积分20
7秒前
yx发布了新的文献求助10
7秒前
8秒前
脑洞疼应助123采纳,获得10
8秒前
8秒前
雨晴轻完成签到,获得积分10
8秒前
整齐的傲之完成签到,获得积分10
9秒前
9秒前
丁老三完成签到,获得积分10
9秒前
佟翠芙完成签到,获得积分10
10秒前
日央完成签到,获得积分10
11秒前
12秒前
郝富完成签到,获得积分10
12秒前
joy完成签到,获得积分20
12秒前
ron404应助诚心的寻凝采纳,获得10
13秒前
13秒前
fushuai1996发布了新的文献求助30
13秒前
14秒前
小香草完成签到,获得积分10
14秒前
14秒前
14秒前
zryyy完成签到,获得积分20
14秒前
LiLi完成签到,获得积分10
15秒前
xzx发布了新的文献求助10
15秒前
15秒前
tracer完成签到,获得积分10
15秒前
15秒前
秀丽芒果完成签到,获得积分10
15秒前
Catherine发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151089
求助须知:如何正确求助?哪些是违规求助? 2802543
关于积分的说明 7848537
捐赠科研通 2459877
什么是DOI,文献DOI怎么找? 1309380
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757