已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Calcium Scoring at Coronary CT Angiography Using Deep Learning

医学 冠状动脉造影 放射科 血管造影 冠状动脉钙 计算机断层摄影术 心脏病学 内科学 心肌梗塞
作者
Dan Mu,Junjie Bai,Wenping Chen,Hongming Yu,Jing Liang,Kejie Yin,Hui Li,Qing Zhao,Kelei He,Haoyu Yang,Jinyao Zhang,Youbing Yin,Hunter W. McLellan,U. Joseph Schoepf,Bing Zhang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (2): 309-316 被引量:73
标识
DOI:10.1148/radiol.2021211483
摘要

Background Separate noncontrast CT to quantify the coronary artery calcium (CAC) score often precedes coronary CT angiography (CTA). Quantifying CAC scores directly at CTA would eliminate the additional radiation produced at CT but remains challenging. Purpose To quantify CAC scores automatically from a single CTA scan. Materials and Methods In this retrospective study, a deep learning method to quantify CAC scores automatically from a single CTA scan was developed on training and validation sets of 292 patients and 73 patients collected from March 2019 to July 2020. Virtual noncontrast scans obtained with a spectral CT scanner were used to develop the algorithm to alleviate tedious manual annotation of calcium regions. The proposed method was validated on an independent test set of 240 CTA scans collected from three different CT scanners from August 2020 to November 2020 using the Pearson correlation coefficient, the coefficient of determination, or r2, and the Bland-Altman plot against the semiautomatic Agatston score at noncontrast CT. The cardiovascular risk categorization performance was evaluated using weighted κ based on the Agatston score (CAC score risk categories: 0-10, 11-100, 101-400, and >400). Results Two hundred forty patients (mean age, 60 years ± 11 [standard deviation]; 146 men) were evaluated. The positive correlation between the automatic deep learning CTA and semiautomatic noncontrast CT CAC score was excellent (Pearson correlation = 0.96; r2 = 0.92). The risk categorization agreement based on deep learning CTA and noncontrast CT CAC scores was excellent (weighted κ = 0.94 [95% CI: 0.91, 0.97]), with 223 of 240 scans (93%) categorized correctly. All patients who were miscategorized were in the direct neighboring risk groups. The proposed method's differences from the noncontrast CT CAC score were not statistically significant with regard to scanner (P = .15), sex (P = .051), and section thickness (P = .67). Conclusion A deep learning automatic calcium scoring method accurately quantified coronary artery calcium from CT angiography images and categorized risk. © RSNA, 2021 See also the editorial by Goldfarb and Cao et al in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单紫菜发布了新的文献求助10
刚刚
FashionBoy应助六一采纳,获得10
1秒前
sec1完成签到,获得积分10
1秒前
芭蕾恰恰舞完成签到,获得积分10
1秒前
3秒前
怪怪完成签到 ,获得积分10
3秒前
久久丫完成签到 ,获得积分10
4秒前
5秒前
小狗没烦恼完成签到 ,获得积分10
5秒前
清秀的吐司完成签到,获得积分10
5秒前
是菜团子呀完成签到 ,获得积分10
6秒前
时空虫洞完成签到,获得积分10
7秒前
ding应助恰恰恰采纳,获得10
7秒前
7秒前
Ih6uaZ关注了科研通微信公众号
9秒前
乐乐完成签到 ,获得积分10
9秒前
9秒前
科研通AI6应助纯真衬衫采纳,获得10
9秒前
WZY16666完成签到,获得积分10
9秒前
一颗小洋葱完成签到 ,获得积分10
9秒前
Fisher完成签到,获得积分10
10秒前
甜甜青雪发布了新的文献求助10
10秒前
Walter完成签到 ,获得积分10
10秒前
明明完成签到,获得积分10
10秒前
聪明宛菡完成签到 ,获得积分10
11秒前
甜甜冰巧发布了新的文献求助10
12秒前
淮安石河子完成签到 ,获得积分10
12秒前
TTYYI完成签到 ,获得积分10
13秒前
turtle完成签到 ,获得积分10
13秒前
英姑应助lejunia采纳,获得30
13秒前
老实的友桃完成签到,获得积分10
13秒前
wcy完成签到 ,获得积分10
15秒前
细心青雪完成签到 ,获得积分10
16秒前
mantou002应助Artin采纳,获得200
18秒前
蛋泥完成签到,获得积分10
18秒前
冷静的访天完成签到 ,获得积分10
18秒前
COCOO完成签到,获得积分10
19秒前
T723完成签到 ,获得积分10
19秒前
完美天蓝完成签到 ,获得积分10
19秒前
顺心的尔安完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644285
求助须知:如何正确求助?哪些是违规求助? 4763340
关于积分的说明 15024405
捐赠科研通 4802493
什么是DOI,文献DOI怎么找? 2567479
邀请新用户注册赠送积分活动 1525242
关于科研通互助平台的介绍 1484674

今日热心研友

mantou002
200
灰灰
2 50
干净寻冬
4 10
Criminology34
2 10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10