Calcium Scoring at Coronary CT Angiography Using Deep Learning

医学 冠状动脉造影 放射科 血管造影 冠状动脉钙 计算机断层摄影术 心脏病学 内科学 心肌梗塞
作者
Dan Mu,Junjie Bai,Wenping Chen,Hongming Yu,Jing Liang,Kejie Yin,Hui Li,Qing Zhao,Kelei He,Haoyu Yang,Jinyao Zhang,Youbing Yin,Hunter W. McLellan,U. Joseph Schoepf,Bing Zhang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (2): 309-316 被引量:54
标识
DOI:10.1148/radiol.2021211483
摘要

Background Separate noncontrast CT to quantify the coronary artery calcium (CAC) score often precedes coronary CT angiography (CTA). Quantifying CAC scores directly at CTA would eliminate the additional radiation produced at CT but remains challenging. Purpose To quantify CAC scores automatically from a single CTA scan. Materials and Methods In this retrospective study, a deep learning method to quantify CAC scores automatically from a single CTA scan was developed on training and validation sets of 292 patients and 73 patients collected from March 2019 to July 2020. Virtual noncontrast scans obtained with a spectral CT scanner were used to develop the algorithm to alleviate tedious manual annotation of calcium regions. The proposed method was validated on an independent test set of 240 CTA scans collected from three different CT scanners from August 2020 to November 2020 using the Pearson correlation coefficient, the coefficient of determination, or r2, and the Bland-Altman plot against the semiautomatic Agatston score at noncontrast CT. The cardiovascular risk categorization performance was evaluated using weighted κ based on the Agatston score (CAC score risk categories: 0–10, 11–100, 101–400, and >400). Results Two hundred forty patients (mean age, 60 years ± 11 [standard deviation]; 146 men) were evaluated. The positive correlation between the automatic deep learning CTA and semiautomatic noncontrast CT CAC score was excellent (Pearson correlation = 0.96; r2 = 0.92). The risk categorization agreement based on deep learning CTA and noncontrast CT CAC scores was excellent (weighted κ = 0.94 [95% CI: 0.91, 0.97]), with 223 of 240 scans (93%) categorized correctly. All patients who were miscategorized were in the direct neighboring risk groups. The proposed method's differences from the noncontrast CT CAC score were not statistically significant with regard to scanner (P = .15), sex (P = .051), and section thickness (P = .67). Conclusion A deep learning automatic calcium scoring method accurately quantified coronary artery calcium from CT angiography images and categorized risk. © RSNA, 2021 See also the editorial by Goldfarb and Cao et al in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华十三发布了新的文献求助10
刚刚
2秒前
务实凝阳完成签到,获得积分10
7秒前
旺仔完成签到,获得积分10
7秒前
10秒前
10秒前
10秒前
11秒前
Alina1874完成签到,获得积分10
11秒前
gigadrill发布了新的文献求助30
12秒前
星辰大海应助快乐冰激凌采纳,获得10
13秒前
13秒前
qiuxin发布了新的文献求助10
15秒前
15秒前
Qing发布了新的文献求助10
16秒前
汉堡包应助满意的天蓝采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
大模型应助科研通管家采纳,获得10
16秒前
Hermione发布了新的文献求助10
16秒前
热心市民小红花应助syf采纳,获得10
16秒前
朴素的啤酒完成签到,获得积分10
17秒前
17秒前
搜集达人应助锦鲤采纳,获得10
17秒前
linmo发布了新的文献求助10
17秒前
Hello应助ike_1991采纳,获得10
18秒前
橙子完成签到,获得积分10
19秒前
大模型应助谨慎的尔白采纳,获得10
20秒前
冰忆发布了新的文献求助10
21秒前
程院发布了新的文献求助10
21秒前
韩浩男完成签到,获得积分10
22秒前
烯灯发布了新的文献求助10
23秒前
April完成签到 ,获得积分0
23秒前
无情的幻嫣完成签到,获得积分10
24秒前
香蕉觅云应助Hermione采纳,获得10
25秒前
25秒前
格格发布了新的文献求助10
25秒前
26秒前
gigadrill完成签到,获得积分20
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089