亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calcium Scoring at Coronary CT Angiography Using Deep Learning

医学 冠状动脉造影 放射科 血管造影 冠状动脉钙 计算机断层摄影术 心脏病学 内科学 心肌梗塞
作者
Dan Mu,Junjie Bai,Wenping Chen,Hongming Yu,Jing Liang,Kejie Yin,Hui Li,Qing Zhao,Kelei He,Haoyu Yang,Jinyao Zhang,Youbing Yin,Hunter W. McLellan,U. Joseph Schoepf,Bing Zhang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (2): 309-316 被引量:73
标识
DOI:10.1148/radiol.2021211483
摘要

Background Separate noncontrast CT to quantify the coronary artery calcium (CAC) score often precedes coronary CT angiography (CTA). Quantifying CAC scores directly at CTA would eliminate the additional radiation produced at CT but remains challenging. Purpose To quantify CAC scores automatically from a single CTA scan. Materials and Methods In this retrospective study, a deep learning method to quantify CAC scores automatically from a single CTA scan was developed on training and validation sets of 292 patients and 73 patients collected from March 2019 to July 2020. Virtual noncontrast scans obtained with a spectral CT scanner were used to develop the algorithm to alleviate tedious manual annotation of calcium regions. The proposed method was validated on an independent test set of 240 CTA scans collected from three different CT scanners from August 2020 to November 2020 using the Pearson correlation coefficient, the coefficient of determination, or r2, and the Bland-Altman plot against the semiautomatic Agatston score at noncontrast CT. The cardiovascular risk categorization performance was evaluated using weighted κ based on the Agatston score (CAC score risk categories: 0-10, 11-100, 101-400, and >400). Results Two hundred forty patients (mean age, 60 years ± 11 [standard deviation]; 146 men) were evaluated. The positive correlation between the automatic deep learning CTA and semiautomatic noncontrast CT CAC score was excellent (Pearson correlation = 0.96; r2 = 0.92). The risk categorization agreement based on deep learning CTA and noncontrast CT CAC scores was excellent (weighted κ = 0.94 [95% CI: 0.91, 0.97]), with 223 of 240 scans (93%) categorized correctly. All patients who were miscategorized were in the direct neighboring risk groups. The proposed method's differences from the noncontrast CT CAC score were not statistically significant with regard to scanner (P = .15), sex (P = .051), and section thickness (P = .67). Conclusion A deep learning automatic calcium scoring method accurately quantified coronary artery calcium from CT angiography images and categorized risk. © RSNA, 2021 See also the editorial by Goldfarb and Cao et al in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
颖颖发布了新的文献求助10
14秒前
颖颖完成签到,获得积分10
24秒前
酷波er应助科研通管家采纳,获得10
40秒前
单薄咖啡豆完成签到 ,获得积分10
53秒前
55秒前
开霁发布了新的文献求助10
1分钟前
凡人完成签到 ,获得积分10
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
沉香续断完成签到,获得积分20
1分钟前
古古怪界丶黑大帅完成签到,获得积分10
1分钟前
酷波er应助沉香续断采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
Hvginn完成签到,获得积分10
2分钟前
苏子愈完成签到 ,获得积分10
2分钟前
动听衬衫完成签到 ,获得积分10
3分钟前
动听衬衫完成签到 ,获得积分10
3分钟前
动听衬衫完成签到 ,获得积分10
3分钟前
3分钟前
沉香续断发布了新的文献求助10
3分钟前
3分钟前
隐形曼青应助结实青丝采纳,获得10
3分钟前
孤独蘑菇完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
王骧完成签到,获得积分10
4分钟前
美满信封完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6.2应助王骧采纳,获得10
5分钟前
5分钟前
5分钟前
606发布了新的文献求助10
5分钟前
淮安石河子完成签到 ,获得积分10
5分钟前
5分钟前
威武采白完成签到 ,获得积分10
5分钟前
火山蜗牛完成签到,获得积分10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870815
求助须知:如何正确求助?哪些是违规求助? 6468169
关于积分的说明 15665055
捐赠科研通 4987063
什么是DOI,文献DOI怎么找? 2689150
邀请新用户注册赠送积分活动 1631491
关于科研通互助平台的介绍 1589535