ZrO2-x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation

纳米材料基催化剂 扩展X射线吸收精细结构 催化作用 氢溢流 化学 吸附 化学工程 材料科学 无机化学 有机化学 物理化学 吸收光谱法 量子力学 物理 工程类
作者
Guoqing Cui,Xi Zhang,Hui Wang,Zeyang Li,Wenlong Wang,Qiang Yu,Lirong Zheng,Yangdong Wang,Junhua Zhu,Min Wei
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:280: 119406-119406 被引量:93
标识
DOI:10.1016/j.apcatb.2020.119406
摘要

Abstract Carbon-oxygen bond hydrogenation serves as a versatile fundamental reaction extensively applied in chemicals synthesis, but rational design of heterogeneous catalysts with satisfactory catalytic performance and stability remains a big challenge. Herein, a ZrO2-x modified Cu nanocatalyst with unique interfacial structure Cu-O-Zr3+-Vo (Vo denotes oxygen vacancy), was elaborately designed and prepared via a facile in situ structural transformation from layered double hydroxide precursors, confirmed by a comprehensive study including HADDF-STEM, in situ EXAFS and quasi in situ XPS measurements. The optimized catalyst (Cu/ZrO2-x-S3) exhibits an extremely high catalytic performance toward dimethyl oxalate (DMO) hydrogenation to ethylene glycol (EG), with a yield of 99.5 %. Notably, the turnover frequency (TOF) value and space time yield of EG reach up to 42.4 h−1 and 1.05 gEG⋅gcat−1⋅h−1, respectively. This is, to the best of our knowledge, the highest level compared with previously reported Cu-based catalysts under similar conditions. In addition, the in situ investigations (in situ DMO-FTIR, in situ DMO-EXAFS) and catalytic evaluations substantiate interfacial sites serve as active center: the Zr3+-Vo facilitates adsorption and activation of C O/C O groups; whilst H2 molecule undergoes dissociation at the interfacial Cu species, followed by hydrogen spillover onto Cu-O-Zr for hydrogenation of activated C O/C O bonds. This interfacial synergistic catalysis offers a new reaction pathway with decreased activation energy, accounting for the resulting superior catalytic performance, which can be extended to other carbon-oxygen bonds hydrogenation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大胆隶发布了新的文献求助10
2秒前
悦耳夏彤关注了科研通微信公众号
2秒前
搞怪芷珍应助Who采纳,获得10
3秒前
3秒前
4秒前
高兴白开水完成签到,获得积分10
4秒前
烟花应助奶油猫猫采纳,获得10
5秒前
羡阳完成签到,获得积分10
5秒前
小飞发布了新的文献求助10
5秒前
6秒前
李爱国应助端庄不愁采纳,获得10
6秒前
淡然篮球完成签到,获得积分10
6秒前
6秒前
榴莲完成签到,获得积分10
8秒前
8秒前
sunny发布了新的文献求助10
8秒前
淡然篮球发布了新的文献求助10
9秒前
9秒前
wpeng326完成签到,获得积分10
9秒前
巧克力发布了新的文献求助10
9秒前
Akim应助afra采纳,获得10
9秒前
wxy完成签到 ,获得积分10
9秒前
天天快乐应助fff采纳,获得10
10秒前
搜集达人应助小元采纳,获得10
10秒前
10秒前
夜夕完成签到,获得积分10
10秒前
11秒前
11秒前
大方听云完成签到 ,获得积分10
11秒前
粗暴的仙人掌完成签到,获得积分10
12秒前
12秒前
13秒前
11111111完成签到,获得积分10
13秒前
wpeng326发布了新的文献求助10
13秒前
XXX发布了新的文献求助10
13秒前
彭于晏应助concise采纳,获得10
13秒前
Leopold完成签到,获得积分10
14秒前
chen发布了新的文献求助10
14秒前
yn发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053