亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight Object Detection Framework for Remote Sensing Images

计算机科学 目标检测 卷积神经网络 探测器 人工智能 遥感 特征(语言学) 任务(项目管理) 计算机视觉 代表(政治) 比例(比率) 计算 特征提取 模式识别(心理学) 对象(语法) 算法 电信 语言学 哲学 物理 管理 量子力学 政治 政治学 法学 经济 地质学
作者
Lang Huyan,Yunpeng Bai,Ying Li,Dongmei Jiang,Yanning Zhang,Quan Zhou,Jiayuan Wei,Juanni Liu,Yi Zhang,Tao Cui
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (4): 683-683 被引量:22
标识
DOI:10.3390/rs13040683
摘要

Onboard real-time object detection in remote sensing images is a crucial but challenging task in this computation-constrained scenario. This task not only requires the algorithm to yield excellent performance but also requests limited time and space complexity of the algorithm. However, previous convolutional neural networks (CNN) based object detectors for remote sensing images suffer from heavy computational cost, which hinders them from being deployed on satellites. Moreover, an onboard detector is desired to detect objects at vastly different scales. To address these issues, we proposed a lightweight one-stage multi-scale feature fusion detector called MSF-SNET for onboard real-time object detection of remote sensing images. Using lightweight SNET as the backbone network reduces the number of parameters and computational complexity. To strengthen the detection performance of small objects, three low-level features are extracted from the three stages of SNET respectively. In the detection part, another three convolutional layers are designed to further extract deep features with rich semantic information for large-scale object detection. To improve detection accuracy, the deep features and low-level features are fused to enhance the feature representation. Extensive experiments and comprehensive evaluations on the openly available NWPU VHR-10 dataset and DIOR dataset are conducted to evaluate the proposed method. Compared with other state-of-art detectors, the proposed detection framework has fewer parameters and calculations, while maintaining consistent accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
解你所忧完成签到 ,获得积分10
2秒前
SciGPT应助浅呀呀呀采纳,获得10
4秒前
ZepHyR发布了新的文献求助10
6秒前
10秒前
李义志发布了新的文献求助10
16秒前
魁梧的衫完成签到 ,获得积分10
16秒前
17秒前
19秒前
LingC完成签到,获得积分10
19秒前
21秒前
24秒前
浅呀呀呀发布了新的文献求助10
24秒前
XueXiTong完成签到,获得积分10
26秒前
Swear完成签到 ,获得积分10
27秒前
29秒前
852应助lzq采纳,获得10
30秒前
雪生在无人荒野完成签到,获得积分10
30秒前
doctor_quyi完成签到,获得积分10
30秒前
32秒前
爆米花应助xinxin采纳,获得10
32秒前
gjn发布了新的文献求助10
35秒前
35秒前
37秒前
37秒前
37秒前
vinss66home发布了新的文献求助10
41秒前
42秒前
逆天大脚发布了新的文献求助10
44秒前
lzq发布了新的文献求助10
44秒前
45秒前
46秒前
科研通AI6应助乐观的非笑采纳,获得10
46秒前
loujiafei发布了新的文献求助10
51秒前
bkagyin应助科研通管家采纳,获得10
52秒前
null应助科研通管家采纳,获得10
52秒前
null应助科研通管家采纳,获得10
52秒前
Orange应助科研通管家采纳,获得10
52秒前
慕子完成签到 ,获得积分10
54秒前
gjn完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264