A Lightweight Object Detection Framework for Remote Sensing Images

计算机科学 目标检测 卷积神经网络 探测器 人工智能 遥感 特征(语言学) 任务(项目管理) 计算机视觉 代表(政治) 比例(比率) 计算 特征提取 模式识别(心理学) 对象(语法) 算法 电信 语言学 哲学 物理 管理 量子力学 政治 政治学 法学 经济 地质学
作者
Lang Huyan,Yunpeng Bai,Ying Li,Dongmei Jiang,Yanning Zhang,Quan Zhou,Jiayuan Wei,Juanni Liu,Yi Zhang,Tao Cui
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 683-683 被引量:22
标识
DOI:10.3390/rs13040683
摘要

Onboard real-time object detection in remote sensing images is a crucial but challenging task in this computation-constrained scenario. This task not only requires the algorithm to yield excellent performance but also requests limited time and space complexity of the algorithm. However, previous convolutional neural networks (CNN) based object detectors for remote sensing images suffer from heavy computational cost, which hinders them from being deployed on satellites. Moreover, an onboard detector is desired to detect objects at vastly different scales. To address these issues, we proposed a lightweight one-stage multi-scale feature fusion detector called MSF-SNET for onboard real-time object detection of remote sensing images. Using lightweight SNET as the backbone network reduces the number of parameters and computational complexity. To strengthen the detection performance of small objects, three low-level features are extracted from the three stages of SNET respectively. In the detection part, another three convolutional layers are designed to further extract deep features with rich semantic information for large-scale object detection. To improve detection accuracy, the deep features and low-level features are fused to enhance the feature representation. Extensive experiments and comprehensive evaluations on the openly available NWPU VHR-10 dataset and DIOR dataset are conducted to evaluate the proposed method. Compared with other state-of-art detectors, the proposed detection framework has fewer parameters and calculations, while maintaining consistent accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anan发布了新的文献求助10
2秒前
慕青应助高大的砖家采纳,获得10
2秒前
tou完成签到,获得积分10
2秒前
2秒前
4秒前
memory发布了新的文献求助10
5秒前
在水一方应助炙热的书竹采纳,获得10
5秒前
咩咩咩咩发布了新的文献求助10
6秒前
7秒前
He发布了新的文献求助30
9秒前
muyi完成签到,获得积分10
10秒前
haoyunlai完成签到,获得积分10
11秒前
坦率的山菡完成签到,获得积分20
11秒前
12秒前
12秒前
bai应助红萌馆管家采纳,获得10
12秒前
12秒前
zoes完成签到 ,获得积分10
13秒前
可爱的函函应助阿xi霸采纳,获得10
14秒前
周杰完成签到,获得积分10
16秒前
64658应助亚南采纳,获得10
16秒前
lsfAZIBhydrogel完成签到,获得积分10
17秒前
17秒前
paixxxxx发布了新的文献求助30
18秒前
hudu完成签到,获得积分10
18秒前
jiujiu关注了科研通微信公众号
18秒前
18秒前
ning完成签到,获得积分10
18秒前
19秒前
上官若男应助凡仔采纳,获得10
19秒前
Sissi完成签到,获得积分10
20秒前
咩咩咩咩完成签到,获得积分10
20秒前
20秒前
21秒前
轻松的百川完成签到,获得积分10
21秒前
paixxxxx完成签到,获得积分10
22秒前
jin发布了新的文献求助10
22秒前
Jasper应助ncc采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181