A Lightweight Object Detection Framework for Remote Sensing Images

计算机科学 目标检测 卷积神经网络 探测器 人工智能 遥感 特征(语言学) 任务(项目管理) 计算机视觉 代表(政治) 比例(比率) 计算 特征提取 模式识别(心理学) 对象(语法) 算法 电信 物理 法学 管理 经济 哲学 地质学 政治 量子力学 语言学 政治学
作者
Lang Huyan,Yunpeng Bai,Ying Li,Dongmei Jiang,Yanning Zhang,Quan Zhou,Jiayuan Wei,Juanni Liu,Yi Zhang,Tao Cui
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 683-683 被引量:22
标识
DOI:10.3390/rs13040683
摘要

Onboard real-time object detection in remote sensing images is a crucial but challenging task in this computation-constrained scenario. This task not only requires the algorithm to yield excellent performance but also requests limited time and space complexity of the algorithm. However, previous convolutional neural networks (CNN) based object detectors for remote sensing images suffer from heavy computational cost, which hinders them from being deployed on satellites. Moreover, an onboard detector is desired to detect objects at vastly different scales. To address these issues, we proposed a lightweight one-stage multi-scale feature fusion detector called MSF-SNET for onboard real-time object detection of remote sensing images. Using lightweight SNET as the backbone network reduces the number of parameters and computational complexity. To strengthen the detection performance of small objects, three low-level features are extracted from the three stages of SNET respectively. In the detection part, another three convolutional layers are designed to further extract deep features with rich semantic information for large-scale object detection. To improve detection accuracy, the deep features and low-level features are fused to enhance the feature representation. Extensive experiments and comprehensive evaluations on the openly available NWPU VHR-10 dataset and DIOR dataset are conducted to evaluate the proposed method. Compared with other state-of-art detectors, the proposed detection framework has fewer parameters and calculations, while maintaining consistent accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陈乐懿完成签到 ,获得积分10
3秒前
李健应助暮秋采纳,获得10
3秒前
哈哈完成签到 ,获得积分10
3秒前
36524发布了新的文献求助30
4秒前
大模型应助me采纳,获得10
4秒前
4秒前
7秒前
cangmingzi发布了新的文献求助10
7秒前
wang发布了新的文献求助30
10秒前
曾云璐完成签到,获得积分20
11秒前
黄超发布了新的文献求助10
12秒前
zhangqian完成签到 ,获得积分10
12秒前
希望天下0贩的0应助牛马采纳,获得10
14秒前
穆振家完成签到,获得积分10
16秒前
16秒前
顾矜应助曾云璐采纳,获得10
16秒前
小蘑菇应助小豆豆采纳,获得10
18秒前
醋溜爆肚儿完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
21秒前
1Liang发布了新的文献求助10
21秒前
ezekiet发布了新的文献求助10
21秒前
21秒前
爆米花应助陈嘟嘟采纳,获得10
22秒前
顾矜应助Vresty采纳,获得10
23秒前
17764715645发布了新的文献求助10
24秒前
EJSA发布了新的文献求助10
25秒前
CodeCraft应助雪雪采纳,获得10
26秒前
秋沧海完成签到,获得积分10
26秒前
26秒前
牛马发布了新的文献求助10
27秒前
27秒前
Lucas应助pjson15376449841采纳,获得10
27秒前
nenoaowu发布了新的文献求助10
28秒前
英俊的铭应助xiuxiu125采纳,获得10
28秒前
企鹅不耐热完成签到 ,获得积分10
29秒前
成就雨筠发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252465
求助须知:如何正确求助?哪些是违规求助? 4416187
关于积分的说明 13748934
捐赠科研通 4288199
什么是DOI,文献DOI怎么找? 2352788
邀请新用户注册赠送积分活动 1349608
关于科研通互助平台的介绍 1309131