A Lightweight Object Detection Framework for Remote Sensing Images

计算机科学 目标检测 卷积神经网络 探测器 人工智能 遥感 特征(语言学) 任务(项目管理) 计算机视觉 代表(政治) 比例(比率) 计算 特征提取 模式识别(心理学) 对象(语法) 算法 电信 语言学 哲学 物理 管理 量子力学 政治 政治学 法学 经济 地质学
作者
Lang Huyan,Yunpeng Bai,Ying Li,Dongmei Jiang,Yanning Zhang,Quan Zhou,Jiayuan Wei,Juanni Liu,Yi Zhang,Tao Cui
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 683-683 被引量:22
标识
DOI:10.3390/rs13040683
摘要

Onboard real-time object detection in remote sensing images is a crucial but challenging task in this computation-constrained scenario. This task not only requires the algorithm to yield excellent performance but also requests limited time and space complexity of the algorithm. However, previous convolutional neural networks (CNN) based object detectors for remote sensing images suffer from heavy computational cost, which hinders them from being deployed on satellites. Moreover, an onboard detector is desired to detect objects at vastly different scales. To address these issues, we proposed a lightweight one-stage multi-scale feature fusion detector called MSF-SNET for onboard real-time object detection of remote sensing images. Using lightweight SNET as the backbone network reduces the number of parameters and computational complexity. To strengthen the detection performance of small objects, three low-level features are extracted from the three stages of SNET respectively. In the detection part, another three convolutional layers are designed to further extract deep features with rich semantic information for large-scale object detection. To improve detection accuracy, the deep features and low-level features are fused to enhance the feature representation. Extensive experiments and comprehensive evaluations on the openly available NWPU VHR-10 dataset and DIOR dataset are conducted to evaluate the proposed method. Compared with other state-of-art detectors, the proposed detection framework has fewer parameters and calculations, while maintaining consistent accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助猫和老鼠采纳,获得10
6秒前
7秒前
林红刚完成签到,获得积分10
7秒前
小比熊完成签到,获得积分10
8秒前
Hello应助awspring采纳,获得10
9秒前
DNAdamage发布了新的文献求助10
10秒前
11秒前
13秒前
14秒前
xuanxuan完成签到,获得积分20
14秒前
jj完成签到,获得积分10
15秒前
fuchao完成签到,获得积分20
15秒前
16秒前
猫和老鼠发布了新的文献求助10
18秒前
共享精神应助milan001采纳,获得10
19秒前
卷卷完成签到,获得积分10
19秒前
拼搏煎蛋完成签到,获得积分10
20秒前
agnes完成签到,获得积分10
21秒前
yaya完成签到 ,获得积分10
22秒前
22秒前
awspring完成签到,获得积分20
22秒前
猫和老鼠完成签到,获得积分10
23秒前
王不王发布了新的文献求助10
23秒前
zhourenpeng完成签到,获得积分10
24秒前
zhouyan完成签到,获得积分10
27秒前
sarah完成签到,获得积分10
30秒前
32秒前
aiid完成签到,获得积分10
32秒前
proud完成签到 ,获得积分10
35秒前
36秒前
37秒前
怡然的飞珍完成签到,获得积分10
38秒前
红黄蓝完成签到 ,获得积分10
41秒前
aiid发布了新的文献求助10
41秒前
王不王完成签到,获得积分10
42秒前
卷卷发布了新的文献求助10
42秒前
43秒前
啊哦完成签到,获得积分10
45秒前
46秒前
wxyyyyyy完成签到 ,获得积分10
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003