Dynamics of a Rumor Propagation Model With Stochastic Perturbation on Homogeneous Social Networks

谣言 前提 计算机科学 同种类的 噪音(视频) 常量(计算机编程) 随机建模 统计物理学 摄动(天文学) 计量经济学 数学 物理 统计 人工智能 认识论 法学 图像(数学) 政治学 哲学 程序设计语言 量子力学
作者
Yuhuai Zhang,Jianjun Zhu
出处
期刊:Journal of Computational and Nonlinear Dynamics [ASM International]
卷期号:17 (3) 被引量:10
标识
DOI:10.1115/1.4053269
摘要

Abstract The rapid development of information society highlights the important role of rumors in social communication, and their propagation has a significant impact on human production and life. The investigation of the influence of uncertainty on rumor propagation is an important issue in the current communication study. Due to incomprehension about others and the stochastic properties of the users' behavior, the transmission rate between individuals on social network platforms is usually not a constant value. In this paper, we propose a new rumor propagation model on homogeneous social networks from the deterministic structure to the stochastic structure. First, a unique global positive solution of the rumor propagation model is obtained. Then, we verify that the extinction and persistence of the stochastic rumor propagation model are restricted by some conditions. If R̂0*<1 and the noise intensity σi(i=1,2,3) satisfies some certain conditions, rumors will extinct with a probability one. If R0*>1, rumor-spreading individuals will persist in the system, which means the rumor will prevail for a long time. Finally, through some numerical simulations, the validity and rationality of the theoretical analysis are effectively verified. The numerical results show that (1) on the premise that other parameters are determined, the increase of noise intensity can effectively control the spread of rumors; (2) cut off the way of spreading rumors and reduce the contact between ignorant and rumor-spreading individuals (i.e., reduce the value of α); popularize scientific knowledge, reducing the attraction of rumors (i.e., increase the value of β) or replacing rumors of emergencies with other hot topics (i.e., increase the value of η) can effectively curb rumor propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyric_完成签到,获得积分10
1秒前
Xethan完成签到,获得积分10
1秒前
阿兰完成签到 ,获得积分10
4秒前
Biao完成签到,获得积分10
5秒前
5秒前
5秒前
深情安青应助水凝胶采纳,获得10
6秒前
迅速寻桃完成签到,获得积分20
6秒前
简单酒窝完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
满意悒发布了新的文献求助10
9秒前
铭心完成签到,获得积分10
9秒前
uss完成签到,获得积分10
9秒前
jixuzhuixun发布了新的文献求助10
9秒前
10秒前
11秒前
imlarry发布了新的文献求助10
12秒前
陈奥发布了新的文献求助20
12秒前
拾一发布了新的文献求助10
12秒前
小w发布了新的文献求助10
12秒前
科研通AI2S应助雨鑫大聪明采纳,获得10
12秒前
wwho_O完成签到 ,获得积分10
13秒前
14秒前
14秒前
清脆的书桃完成签到,获得积分10
15秒前
科研通AI5应助很多熏熏采纳,获得10
15秒前
似鱼发布了新的文献求助10
15秒前
16秒前
16秒前
烟花应助木森ab采纳,获得10
16秒前
tcf发布了新的文献求助20
16秒前
jc完成签到,获得积分10
17秒前
17秒前
chengwanying完成签到 ,获得积分10
19秒前
细心的小懒虫完成签到,获得积分10
20秒前
六尺巷完成签到,获得积分10
21秒前
陈奥发布了新的文献求助10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427