计算机科学
人工智能
卷积神经网络
正电子发射断层摄影术
模态(人机交互)
特征提取
模式识别(心理学)
情态动词
变压器
计算机视觉
深度学习
计算
图像融合
图像(数学)
核医学
医学
工程类
算法
电气工程
电压
化学
高分子化学
作者
Xin Xing,Gongbo Liang,Yu Zhang,Subash Khanal,Ai‐Ling Lin,Nathan Jacobs
标识
DOI:10.1109/isbi52829.2022.9761584
摘要
We present a new model trained on multi-modalities of Positron Emission Tomography images (PET-AV45 and PET-FDG) for Alzheimer’s Disease (AD) diagnosis. Unlike the conventional methods using multi-modal 3D/2D CNN architecture, our design replaces the Convolutional Neural Net-work (CNN) by Vision Transformer (ViT). Considering the high computation cost of 3D images, we firstly employ a 3D-to-2D operation to project the 3D PET images into 2D fusion images. Then, we forward the fused multi-modal 2D images to a parallel ViT model for feature extraction, followed by classification for AD diagnosis. For evaluation, we use PET images from ADNI. The proposed model outperforms several strong baseline models in our experiments and achieves 0.91 accuracy and 0.95 AUC.
科研通智能强力驱动
Strongly Powered by AbleSci AI