Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition

脑电图 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 语音识别 情绪识别 心理学 神经科学
作者
Mengxia Xing,Shiang Hu,Bing Wei,Zhao Lv
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:376: 109624-109624 被引量:19
标识
DOI:10.1016/j.jneumeth.2022.109624
摘要

Multimedia stimulation of brain activity is important for emotion induction. Based on brain activity, emotion recognition using EEG signals has become a hot issue in the field of affective computing.In this paper, we develop a noval odor-video elicited physiological signal database (OVPD), in which we collect the EEG signals from eight participants in positive, neutral and negative emotional states when they are stimulated by synchronizing traditional video content with the odors. To make full use of the EEG features from different domains, we design a 3DCNN-BiLSTM model combining convolutional neural network (CNN) and bidirectional long short term memory (BiLSTM) for EEG emotion recognition. First, we transform EEG signals into 4D representations that retain spatial, frequency and temporal information. Then, the representations are fed into the 3DCNN-BiLSTM model to recognize emotions. CNN is applied to learn spatial and frequency information from the 4D representations. BiLSTM is designed to extract forward and backward temporal dependences.We conduct 5-fold cross validation experiments five times on the OVPD dataset to evaluate the performance of the model. The experimental results show that our presented model achieves an average accuracy of 98.29% with the standard deviation of 0.72% under the olfactory-enhanced video stimuli, and an average accuracy of 98.03% with the standard deviation of 0.73% under the traditional video stimuli on the OVPD dataset in the three-class classification of positive, neutral and negative emotions. To verify the generalisability of our proposed model, we also evaluate this approach on the public EEG emotion dataset (SEED).Compared with other baseline methods, our designed model achieves better recognition performance on the OVPD dataset. The average accuracy of positive, neutral and negative emotions is better in response to the olfactory-enhanced videos than the pure videos for the 3DCNN-BiLSTM model and other baseline methods.The proposed 3DCNN-BiLSTM model is effective by fusing the spatial-frequency-temporal features of EEG signals for emotion recognition. The provided olfactory stimuli can induce stronger emotions than traditional video stimuli and improve the accuracy of emotion recognition to a certain extent. However, superimposing odors unrelated to the video scenes may distract participants' attention, and thus reduce the final accuracy of EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
jie酱拌面应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
浮游应助无心的依秋采纳,获得40
刚刚
852应助科研通管家采纳,获得10
刚刚
刚刚
jie酱拌面应助科研通管家采纳,获得10
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
热心子轩应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
搜集达人应助adasdad采纳,获得10
1秒前
all应助科研通管家采纳,获得20
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
178应助科研通管家采纳,获得10
1秒前
w_tiger完成签到 ,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
顾矜应助还单身的香菇采纳,获得10
2秒前
聪明无敌小腚宝完成签到,获得积分10
2秒前
wz完成签到 ,获得积分10
2秒前
英俊的铭应助CHL5722采纳,获得10
3秒前
4秒前
4秒前
zj发布了新的文献求助10
4秒前
南枝完成签到,获得积分10
4秒前
科研通AI5应助qwe31533采纳,获得30
4秒前
科目三应助yukky采纳,获得10
4秒前
campus完成签到,获得积分10
4秒前
Lucas应助glycine采纳,获得10
5秒前
山君完成签到 ,获得积分10
5秒前
如意草丛完成签到,获得积分10
5秒前
深情安青应助风起采纳,获得10
5秒前
何照人完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
洪艳发布了新的文献求助30
6秒前
Herman发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513