Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition

脑电图 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 语音识别 情绪识别 心理学 神经科学
作者
Mengxia Xing,Shiang Hu,Bing Wei,Zhao Lv
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:376: 109624-109624 被引量:11
标识
DOI:10.1016/j.jneumeth.2022.109624
摘要

Multimedia stimulation of brain activity is important for emotion induction. Based on brain activity, emotion recognition using EEG signals has become a hot issue in the field of affective computing.In this paper, we develop a noval odor-video elicited physiological signal database (OVPD), in which we collect the EEG signals from eight participants in positive, neutral and negative emotional states when they are stimulated by synchronizing traditional video content with the odors. To make full use of the EEG features from different domains, we design a 3DCNN-BiLSTM model combining convolutional neural network (CNN) and bidirectional long short term memory (BiLSTM) for EEG emotion recognition. First, we transform EEG signals into 4D representations that retain spatial, frequency and temporal information. Then, the representations are fed into the 3DCNN-BiLSTM model to recognize emotions. CNN is applied to learn spatial and frequency information from the 4D representations. BiLSTM is designed to extract forward and backward temporal dependences.We conduct 5-fold cross validation experiments five times on the OVPD dataset to evaluate the performance of the model. The experimental results show that our presented model achieves an average accuracy of 98.29% with the standard deviation of 0.72% under the olfactory-enhanced video stimuli, and an average accuracy of 98.03% with the standard deviation of 0.73% under the traditional video stimuli on the OVPD dataset in the three-class classification of positive, neutral and negative emotions. To verify the generalisability of our proposed model, we also evaluate this approach on the public EEG emotion dataset (SEED).Compared with other baseline methods, our designed model achieves better recognition performance on the OVPD dataset. The average accuracy of positive, neutral and negative emotions is better in response to the olfactory-enhanced videos than the pure videos for the 3DCNN-BiLSTM model and other baseline methods.The proposed 3DCNN-BiLSTM model is effective by fusing the spatial-frequency-temporal features of EEG signals for emotion recognition. The provided olfactory stimuli can induce stronger emotions than traditional video stimuli and improve the accuracy of emotion recognition to a certain extent. However, superimposing odors unrelated to the video scenes may distract participants' attention, and thus reduce the final accuracy of EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANANAN应助wwiee采纳,获得20
刚刚
1秒前
R66发布了新的文献求助10
2秒前
2秒前
科研小白发布了新的文献求助10
3秒前
搜集达人应助斑鸠津采纳,获得10
3秒前
tsgdf完成签到 ,获得积分20
4秒前
yvxi完成签到,获得积分10
5秒前
5秒前
手机应助Lee采纳,获得10
7秒前
笨蛋小姐完成签到,获得积分20
7秒前
ccm应助lifeifei0629采纳,获得10
7秒前
LYY发布了新的文献求助10
8秒前
9秒前
雅典娜完成签到,获得积分10
9秒前
sbrcpyf发布了新的文献求助10
10秒前
ccm应助水云间采纳,获得10
12秒前
科研小白发布了新的文献求助10
13秒前
斯文败类应助bo采纳,获得10
14秒前
15秒前
无与伦比关注了科研通微信公众号
17秒前
斯文败类应助Bambi采纳,获得10
17秒前
活力的烨伟完成签到,获得积分10
18秒前
LYY完成签到,获得积分10
19秒前
bkagyin应助吴灵采纳,获得10
19秒前
19秒前
wang完成签到,获得积分10
19秒前
科目三应助荒谬采纳,获得10
20秒前
20秒前
科研通AI2S应助wangsai采纳,获得10
20秒前
李冰洋发布了新的文献求助10
21秒前
CipherSage应助tsgdf采纳,获得10
21秒前
haha发布了新的文献求助20
21秒前
眯眯眼的初翠完成签到,获得积分10
22秒前
22秒前
小西完成签到 ,获得积分10
23秒前
朴素朋友完成签到,获得积分10
24秒前
deer完成签到 ,获得积分10
25秒前
失眠店员发布了新的文献求助10
25秒前
打打应助czy采纳,获得10
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325583
求助须知:如何正确求助?哪些是违规求助? 2956316
关于积分的说明 8580004
捐赠科研通 2634266
什么是DOI,文献DOI怎么找? 1441859
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654788