Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition

脑电图 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 语音识别 情绪识别 心理学 神经科学
作者
Mengxia Xing,Shiang Hu,Bing Wei,Zhao Lv
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:376: 109624-109624 被引量:16
标识
DOI:10.1016/j.jneumeth.2022.109624
摘要

Multimedia stimulation of brain activity is important for emotion induction. Based on brain activity, emotion recognition using EEG signals has become a hot issue in the field of affective computing.In this paper, we develop a noval odor-video elicited physiological signal database (OVPD), in which we collect the EEG signals from eight participants in positive, neutral and negative emotional states when they are stimulated by synchronizing traditional video content with the odors. To make full use of the EEG features from different domains, we design a 3DCNN-BiLSTM model combining convolutional neural network (CNN) and bidirectional long short term memory (BiLSTM) for EEG emotion recognition. First, we transform EEG signals into 4D representations that retain spatial, frequency and temporal information. Then, the representations are fed into the 3DCNN-BiLSTM model to recognize emotions. CNN is applied to learn spatial and frequency information from the 4D representations. BiLSTM is designed to extract forward and backward temporal dependences.We conduct 5-fold cross validation experiments five times on the OVPD dataset to evaluate the performance of the model. The experimental results show that our presented model achieves an average accuracy of 98.29% with the standard deviation of 0.72% under the olfactory-enhanced video stimuli, and an average accuracy of 98.03% with the standard deviation of 0.73% under the traditional video stimuli on the OVPD dataset in the three-class classification of positive, neutral and negative emotions. To verify the generalisability of our proposed model, we also evaluate this approach on the public EEG emotion dataset (SEED).Compared with other baseline methods, our designed model achieves better recognition performance on the OVPD dataset. The average accuracy of positive, neutral and negative emotions is better in response to the olfactory-enhanced videos than the pure videos for the 3DCNN-BiLSTM model and other baseline methods.The proposed 3DCNN-BiLSTM model is effective by fusing the spatial-frequency-temporal features of EEG signals for emotion recognition. The provided olfactory stimuli can induce stronger emotions than traditional video stimuli and improve the accuracy of emotion recognition to a certain extent. However, superimposing odors unrelated to the video scenes may distract participants' attention, and thus reduce the final accuracy of EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如茵完成签到,获得积分10
1秒前
赴简发布了新的文献求助10
1秒前
1秒前
zhouxiuman完成签到,获得积分10
1秒前
Scout发布了新的文献求助10
1秒前
YYQX发布了新的文献求助10
2秒前
2秒前
周周发布了新的文献求助10
2秒前
3秒前
3秒前
共清欢完成签到,获得积分10
4秒前
Akim应助fazi采纳,获得10
4秒前
5秒前
5秒前
小孟发布了新的文献求助30
5秒前
6秒前
霜二完成签到 ,获得积分10
6秒前
hongyan完成签到,获得积分10
6秒前
如果完成签到,获得积分10
6秒前
可爱的函函应助wxy采纳,获得10
7秒前
娟儿发布了新的文献求助10
7秒前
科研通AI5应助十一采纳,获得10
7秒前
椒盐鲨鱼皮完成签到,获得积分10
7秒前
浏阳河发布了新的文献求助10
7秒前
沐夕完成签到,获得积分10
8秒前
8秒前
QL发布了新的文献求助30
8秒前
小粽子应助给我好好读书采纳,获得20
9秒前
10秒前
11秒前
dzvd发布了新的文献求助10
11秒前
谨慎乌完成签到,获得积分10
11秒前
幸运星完成签到 ,获得积分10
11秒前
12秒前
TCXXS完成签到 ,获得积分10
12秒前
啥也不会的生科实验人完成签到,获得积分10
13秒前
13秒前
lilac举报微笑的冰烟求助涉嫌违规
14秒前
yuyu完成签到 ,获得积分10
14秒前
桃矢完成签到,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993