已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition

脑电图 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 语音识别 情绪识别 心理学 神经科学
作者
Mengxia Xing,Shiang Hu,Bing Wei,Zhao Lv
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:376: 109624-109624 被引量:19
标识
DOI:10.1016/j.jneumeth.2022.109624
摘要

Multimedia stimulation of brain activity is important for emotion induction. Based on brain activity, emotion recognition using EEG signals has become a hot issue in the field of affective computing.In this paper, we develop a noval odor-video elicited physiological signal database (OVPD), in which we collect the EEG signals from eight participants in positive, neutral and negative emotional states when they are stimulated by synchronizing traditional video content with the odors. To make full use of the EEG features from different domains, we design a 3DCNN-BiLSTM model combining convolutional neural network (CNN) and bidirectional long short term memory (BiLSTM) for EEG emotion recognition. First, we transform EEG signals into 4D representations that retain spatial, frequency and temporal information. Then, the representations are fed into the 3DCNN-BiLSTM model to recognize emotions. CNN is applied to learn spatial and frequency information from the 4D representations. BiLSTM is designed to extract forward and backward temporal dependences.We conduct 5-fold cross validation experiments five times on the OVPD dataset to evaluate the performance of the model. The experimental results show that our presented model achieves an average accuracy of 98.29% with the standard deviation of 0.72% under the olfactory-enhanced video stimuli, and an average accuracy of 98.03% with the standard deviation of 0.73% under the traditional video stimuli on the OVPD dataset in the three-class classification of positive, neutral and negative emotions. To verify the generalisability of our proposed model, we also evaluate this approach on the public EEG emotion dataset (SEED).Compared with other baseline methods, our designed model achieves better recognition performance on the OVPD dataset. The average accuracy of positive, neutral and negative emotions is better in response to the olfactory-enhanced videos than the pure videos for the 3DCNN-BiLSTM model and other baseline methods.The proposed 3DCNN-BiLSTM model is effective by fusing the spatial-frequency-temporal features of EEG signals for emotion recognition. The provided olfactory stimuli can induce stronger emotions than traditional video stimuli and improve the accuracy of emotion recognition to a certain extent. However, superimposing odors unrelated to the video scenes may distract participants' attention, and thus reduce the final accuracy of EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
halo发布了新的文献求助10
2秒前
dj发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
6秒前
7秒前
迅速的完成签到 ,获得积分10
7秒前
静柏发布了新的文献求助10
8秒前
害怕的惜文完成签到,获得积分10
8秒前
ppzz1220发布了新的文献求助10
9秒前
柔弱嵩发布了新的文献求助10
10秒前
11秒前
miki完成签到,获得积分10
11秒前
谢大喵发布了新的文献求助10
11秒前
BareBear应助kris采纳,获得10
12秒前
Eatanicecube完成签到,获得积分10
14秒前
14秒前
温暖的聪展完成签到 ,获得积分10
15秒前
络巫琥发布了新的文献求助10
17秒前
17秒前
18秒前
梅梅也发布了新的文献求助30
18秒前
小七完成签到,获得积分10
18秒前
科研通AI2S应助陈cxz采纳,获得10
19秒前
优美的小夏完成签到,获得积分10
19秒前
20秒前
22秒前
酷炫的冰淇淋完成签到,获得积分10
23秒前
Lucas应助知性的采珊采纳,获得10
24秒前
小杭76应助柔弱嵩采纳,获得10
26秒前
28秒前
28秒前
guojingjing发布了新的文献求助10
28秒前
安小敏发布了新的文献求助10
29秒前
小郑不睡觉完成签到 ,获得积分10
29秒前
30秒前
31秒前
Demon应助酷炫的冰淇淋采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300903
求助须知:如何正确求助?哪些是违规求助? 4448717
关于积分的说明 13846704
捐赠科研通 4334501
什么是DOI,文献DOI怎么找? 2379689
邀请新用户注册赠送积分活动 1374783
关于科研通互助平台的介绍 1340460