Robust meta‐analytic‐predictive priors in clinical trials with historical control information

先验概率 频数推理 贝叶斯概率 计算机科学 后验概率 稳健性(进化) 计量经济学 事先信息 数据挖掘 统计 贝叶斯推理 人工智能 数学 生物化学 基因 化学
作者
Heinz Schmidli,Sandro Gsteiger,Satrajit Roychoudhury,Anthony O’Hagan,David J. Spiegelhalter,Beat Neuenschwander
出处
期刊:Biometrics [Oxford University Press]
卷期号:70 (4): 1023-1032 被引量:356
标识
DOI:10.1111/biom.12242
摘要

Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助薛华倩采纳,获得10
刚刚
huqingtao完成签到,获得积分10
刚刚
了了完成签到,获得积分10
刚刚
1秒前
1秒前
666完成签到,获得积分10
2秒前
5秒前
6秒前
星辰大海应助樱桃窝窝头采纳,获得10
7秒前
258369完成签到,获得积分10
8秒前
9秒前
10秒前
Sunwenrui发布了新的文献求助10
11秒前
薛华倩发布了新的文献求助10
15秒前
白白SAMA123发布了新的文献求助10
15秒前
15秒前
昏睡的飞机完成签到,获得积分10
15秒前
16秒前
17秒前
19秒前
miaojuly发布了新的文献求助10
19秒前
共享精神应助追寻筮采纳,获得10
19秒前
20秒前
莫歌完成签到 ,获得积分10
20秒前
2889580752发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
杨冠文发布了新的文献求助10
21秒前
HOME发布了新的文献求助10
23秒前
liz_应助努力工作的人采纳,获得10
24秒前
Lycerdoctor发布了新的文献求助10
24秒前
东瓜魔法师完成签到,获得积分10
24秒前
杨冠文完成签到,获得积分10
26秒前
26秒前
Owen应助肖肖采纳,获得10
27秒前
han应助薛华倩采纳,获得10
28秒前
Rational完成签到,获得积分10
28秒前
祁i应助liuzengzhang666采纳,获得10
29秒前
可爱的函函应助A阿澍采纳,获得10
30秒前
明理凝阳完成签到,获得积分10
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035