Robust meta‐analytic‐predictive priors in clinical trials with historical control information

先验概率 频数推理 贝叶斯概率 计算机科学 后验概率 稳健性(进化) 计量经济学 事先信息 数据挖掘 统计 贝叶斯推理 人工智能 数学 生物化学 基因 化学
作者
Heinz Schmidli,Sandro Gsteiger,Satrajit Roychoudhury,Anthony O’Hagan,David J. Spiegelhalter,Beat Neuenschwander
出处
期刊:Biometrics [Oxford University Press]
卷期号:70 (4): 1023-1032 被引量:404
标识
DOI:10.1111/biom.12242
摘要

Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haicheng发布了新的文献求助10
2秒前
梦开始关注了科研通微信公众号
2秒前
rofsc完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助30
4秒前
山上桃花酿完成签到 ,获得积分10
5秒前
Queen发布了新的文献求助10
6秒前
7秒前
怡然猎豹完成签到,获得积分0
8秒前
飘逸的麦片完成签到,获得积分10
8秒前
Erich完成签到 ,获得积分10
14秒前
空条承太郎的老婆完成签到,获得积分10
15秒前
16秒前
爱听歌宝马完成签到 ,获得积分10
16秒前
17秒前
小鸭嘎嘎完成签到 ,获得积分10
17秒前
洒家完成签到 ,获得积分10
18秒前
19秒前
知性的藏鸟完成签到 ,获得积分10
23秒前
shlw完成签到,获得积分10
24秒前
wang完成签到 ,获得积分10
24秒前
山下梅子酒完成签到 ,获得积分10
26秒前
晓书斋完成签到,获得积分10
28秒前
yy完成签到,获得积分10
28秒前
29秒前
31秒前
陆吉发布了新的文献求助10
32秒前
溜达鸡完成签到 ,获得积分10
34秒前
LL完成签到,获得积分10
35秒前
little完成签到,获得积分20
36秒前
量子星尘发布了新的文献求助10
37秒前
梦开始发布了新的文献求助10
37秒前
CYQ完成签到,获得积分10
38秒前
一颗红葡萄完成签到 ,获得积分10
38秒前
WeiPaiHWuFXZ完成签到 ,获得积分10
42秒前
遗忘完成签到,获得积分10
45秒前
zyj完成签到,获得积分10
47秒前
共享精神应助好困采纳,获得10
47秒前
48秒前
lucky完成签到 ,获得积分10
49秒前
隐形的巴豆完成签到,获得积分10
51秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139539
求助须知:如何正确求助?哪些是违规求助? 4338428
关于积分的说明 13512740
捐赠科研通 4177665
什么是DOI,文献DOI怎么找? 2290966
邀请新用户注册赠送积分活动 1291445
关于科研通互助平台的介绍 1233775