Robust meta‐analytic‐predictive priors in clinical trials with historical control information

先验概率 频数推理 贝叶斯概率 计算机科学 后验概率 稳健性(进化) 计量经济学 事先信息 数据挖掘 统计 贝叶斯推理 人工智能 数学 生物化学 基因 化学
作者
Heinz Schmidli,Sandro Gsteiger,Satrajit Roychoudhury,Anthony O’Hagan,David J. Spiegelhalter,Beat Neuenschwander
出处
期刊:Biometrics [Oxford University Press]
卷期号:70 (4): 1023-1032 被引量:404
标识
DOI:10.1111/biom.12242
摘要

Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI5应助1wEi采纳,获得30
2秒前
2秒前
2秒前
旭_完成签到,获得积分10
2秒前
f_crazy发布了新的文献求助10
3秒前
朱奕韬发布了新的文献求助10
4秒前
唐瑾瑜发布了新的文献求助10
5秒前
小马甲应助backerry采纳,获得10
6秒前
温婉的从凝完成签到,获得积分10
6秒前
7秒前
element完成签到,获得积分10
7秒前
大鹅完成签到 ,获得积分10
9秒前
科研通AI5应助LiY采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
谭宝完成签到,获得积分10
10秒前
11秒前
孤独秋双完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
13秒前
似鱼完成签到,获得积分10
13秒前
14秒前
LLHH发布了新的文献求助10
14秒前
huangt完成签到,获得积分10
15秒前
15秒前
16秒前
哔哩哔哩哔哔哔完成签到,获得积分10
16秒前
16秒前
Orange应助wch666采纳,获得10
16秒前
似鱼发布了新的文献求助10
16秒前
纯情女大发布了新的文献求助10
18秒前
wennnnn完成签到,获得积分10
18秒前
kunkunyu完成签到,获得积分20
19秒前
乐乐应助俭朴的寒天采纳,获得10
19秒前
19秒前
大鹅关注了科研通微信公众号
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942890
求助须知:如何正确求助?哪些是违规求助? 4208298
关于积分的说明 13081999
捐赠科研通 3987523
什么是DOI,文献DOI怎么找? 2183163
邀请新用户注册赠送积分活动 1198757
关于科研通互助平台的介绍 1111169