Robust meta‐analytic‐predictive priors in clinical trials with historical control information

先验概率 频数推理 贝叶斯概率 计算机科学 后验概率 稳健性(进化) 计量经济学 事先信息 数据挖掘 统计 贝叶斯推理 人工智能 数学 生物化学 基因 化学
作者
Heinz Schmidli,Sandro Gsteiger,Satrajit Roychoudhury,Anthony O’Hagan,David J. Spiegelhalter,Beat Neuenschwander
出处
期刊:Biometrics [Oxford University Press]
卷期号:70 (4): 1023-1032 被引量:356
标识
DOI:10.1111/biom.12242
摘要

Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助Echo_1995采纳,获得10
1秒前
吕小布完成签到,获得积分10
2秒前
骑驴追火箭完成签到,获得积分10
4秒前
baomingqiu完成签到 ,获得积分10
4秒前
乐观寻雪完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
复杂勒完成签到,获得积分10
7秒前
8秒前
bird完成签到,获得积分10
9秒前
AaronDP发布了新的文献求助50
10秒前
terryok完成签到,获得积分10
11秒前
Cll完成签到 ,获得积分10
11秒前
聪明的宛菡完成签到,获得积分10
12秒前
CNYDNZB完成签到 ,获得积分10
12秒前
xxj完成签到 ,获得积分10
12秒前
芊芊完成签到 ,获得积分10
13秒前
yar应助bluesky采纳,获得10
13秒前
海人完成签到 ,获得积分10
14秒前
SY15732023811完成签到 ,获得积分10
16秒前
李建勋完成签到,获得积分10
16秒前
科研通AI2S应助一路芬芳采纳,获得10
16秒前
黄花完成签到 ,获得积分10
17秒前
刘珍荣完成签到,获得积分10
18秒前
18秒前
紫金之巅完成签到 ,获得积分10
18秒前
Gang完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
CYYDNDB完成签到 ,获得积分10
21秒前
粿粿一定行完成签到 ,获得积分10
22秒前
23秒前
战战完成签到,获得积分10
24秒前
xlk2222完成签到,获得积分10
27秒前
笨笨以莲完成签到,获得积分10
27秒前
YHX完成签到,获得积分10
28秒前
沐沐心完成签到 ,获得积分10
29秒前
29秒前
30秒前
哭泣笑柳发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022