Robust meta‐analytic‐predictive priors in clinical trials with historical control information

先验概率 频数推理 贝叶斯概率 计算机科学 后验概率 稳健性(进化) 计量经济学 事先信息 数据挖掘 统计 贝叶斯推理 人工智能 数学 生物化学 化学 基因
作者
Heinz Schmidli,Sandro Gsteiger,Satrajit Roychoudhury,Anthony O’Hagan,David J. Spiegelhalter,Beat Neuenschwander
出处
期刊:Biometrics [Wiley]
卷期号:70 (4): 1023-1032 被引量:356
标识
DOI:10.1111/biom.12242
摘要

Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfu发布了新的文献求助10
刚刚
明理依云完成签到,获得积分10
刚刚
刚刚
1秒前
二世小卒完成签到 ,获得积分10
1秒前
和谐乌龟完成签到,获得积分10
2秒前
阳尧完成签到,获得积分10
2秒前
帅气惜霜发布了新的文献求助10
2秒前
2秒前
kkkklo发布了新的文献求助30
4秒前
传奇3应助润润轩轩采纳,获得10
4秒前
4秒前
6秒前
和谐乌龟发布了新的文献求助10
6秒前
zZ完成签到,获得积分10
6秒前
科研小白完成签到,获得积分10
6秒前
LYY发布了新的文献求助10
7秒前
wangfu完成签到,获得积分10
7秒前
ding应助Dddd采纳,获得10
8秒前
yin发布了新的文献求助10
8秒前
大模型应助张张采纳,获得10
8秒前
Akim应助吾问无为谓采纳,获得10
9秒前
9秒前
神勇的冰姬完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
tony完成签到,获得积分10
12秒前
Uynaux发布了新的文献求助30
12秒前
SONG完成签到,获得积分10
12秒前
SYLH应助干秋白采纳,获得10
13秒前
13秒前
风雨1210发布了新的文献求助10
14秒前
文艺书雪完成签到 ,获得积分10
14秒前
独行侠完成签到,获得积分10
14秒前
15秒前
我测你码发布了新的文献求助10
15秒前
又要起名字完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794