Robust meta‐analytic‐predictive priors in clinical trials with historical control information

先验概率 频数推理 贝叶斯概率 计算机科学 后验概率 稳健性(进化) 计量经济学 事先信息 数据挖掘 统计 贝叶斯推理 人工智能 数学 生物化学 基因 化学
作者
Heinz Schmidli,Sandro Gsteiger,Satrajit Roychoudhury,Anthony O’Hagan,David J. Spiegelhalter,Beat Neuenschwander
出处
期刊:Biometrics [Oxford University Press]
卷期号:70 (4): 1023-1032 被引量:404
标识
DOI:10.1111/biom.12242
摘要

Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贺知什么书完成签到,获得积分10
刚刚
歌儿完成签到 ,获得积分10
刚刚
鳈sir发布了新的文献求助10
1秒前
1秒前
rapunzel发布了新的文献求助10
2秒前
wy完成签到 ,获得积分10
3秒前
ddizi发布了新的文献求助10
3秒前
佛人世间完成签到,获得积分10
3秒前
科研通AI6应助ljact采纳,获得10
5秒前
情怀应助Zhu1985采纳,获得10
5秒前
FashionBoy应助内向的昊焱采纳,获得10
5秒前
科研通AI6应助内向的昊焱采纳,获得10
5秒前
无花果应助文艺的草莓采纳,获得10
5秒前
ycy发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
Ava应助ddizi采纳,获得30
9秒前
9秒前
小池同学完成签到,获得积分10
10秒前
科研通AI6应助121311采纳,获得10
11秒前
Carolin发布了新的文献求助10
11秒前
谦让涵菡完成签到 ,获得积分10
12秒前
王耀武完成签到,获得积分10
12秒前
朴素念之完成签到,获得积分20
13秒前
13秒前
学术裁缝发布了新的文献求助10
13秒前
连冬萱发布了新的文献求助10
13秒前
ruby完成签到,获得积分10
13秒前
大魔王完成签到 ,获得积分10
14秒前
zhang完成签到,获得积分10
14秒前
YW发布了新的文献求助30
14秒前
xg发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
踏实绮露完成签到 ,获得积分10
18秒前
18秒前
iam小羊人完成签到,获得积分20
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702