Robust meta‐analytic‐predictive priors in clinical trials with historical control information

先验概率 频数推理 贝叶斯概率 计算机科学 后验概率 稳健性(进化) 计量经济学 事先信息 数据挖掘 统计 贝叶斯推理 人工智能 数学 生物化学 基因 化学
作者
Heinz Schmidli,Sandro Gsteiger,Satrajit Roychoudhury,Anthony O’Hagan,David J. Spiegelhalter,Beat Neuenschwander
出处
期刊:Biometrics [Wiley]
卷期号:70 (4): 1023-1032 被引量:404
标识
DOI:10.1111/biom.12242
摘要

Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
唐氏完成签到,获得积分10
3秒前
SciGPT应助arniu2008采纳,获得10
3秒前
狗狗耳完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
9秒前
9秒前
石博士发布了新的文献求助20
12秒前
14秒前
果称完成签到,获得积分10
16秒前
chenYL完成签到,获得积分20
18秒前
YY完成签到 ,获得积分10
19秒前
rouqingdaoxia完成签到 ,获得积分10
21秒前
面包骑士完成签到,获得积分20
23秒前
情怀应助药成功采纳,获得10
23秒前
24秒前
25秒前
LQ完成签到,获得积分10
25秒前
27秒前
ZhouYW发布了新的文献求助10
28秒前
石博士完成签到,获得积分20
28秒前
29秒前
Orange应助chenYL采纳,获得50
29秒前
CuSO4完成签到,获得积分10
29秒前
30秒前
Joyhold发布了新的文献求助10
30秒前
美好斓发布了新的文献求助10
30秒前
魁梧的涫发布了新的文献求助10
31秒前
Lucas应助Ade采纳,获得10
32秒前
lzhgoashore完成签到,获得积分10
32秒前
CC发布了新的文献求助10
34秒前
Joie完成签到,获得积分10
35秒前
顾矜应助cg采纳,获得30
36秒前
37秒前
赛因斯完成签到,获得积分10
37秒前
老婆婆完成签到,获得积分10
39秒前
_Mr_K_完成签到 ,获得积分10
39秒前
40秒前
Stove完成签到,获得积分10
41秒前
43秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339199
求助须知:如何正确求助?哪些是违规求助? 4476081
关于积分的说明 13930490
捐赠科研通 4371512
什么是DOI,文献DOI怎么找? 2401972
邀请新用户注册赠送积分活动 1394922
关于科研通互助平台的介绍 1366792