T细胞受体
分子生物学
抗体
融合蛋白
抗原
主要组织相容性复合体
免疫印迹
化学
生物
蛋白质G
T细胞
生物化学
免疫系统
重组DNA
免疫学
基因
作者
Tatsuhiko Ozawa,Masae Horii,Eiji Kobayashi,Aishun Jin,Hiroyuki Kishi,Atsushi Muraguchi
标识
DOI:10.1016/j.bbrc.2012.04.134
摘要
The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100–200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-Cβ antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 × 10−5 M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-Cβ antibody, its binding affinity for p/MHC increased by 5-fold (2.2 × 10−6 M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-Cβ antibody, which is probably due to the stabilization of the Vα/Vβ region of the TCR. These findings provide new insights into the binding of sTCRs to p/MHCs and will hopefully be instrumental in establishing functional sTCR as a diagnostic and therapeutic tool for cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI