An Intelligent Caching Scheme Considering the Spatio-Temporal Characteristics of Data in Internet of Vehicles

计算机科学 回程(电信) 隐藏物 计算机网络 互联网 GSM演进的增强数据速率 内容交付 方案(数学) 车载自组网 基站 无线 万维网 人工智能 数学分析 电信 数学 无线自组网
作者
Sahand Khodaparas,Abderrahim Benslimane,Saleh Yousefi
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (5): 7019-7033 被引量:2
标识
DOI:10.1109/tvt.2023.3337051
摘要

The high mobility of vehicles in vehicular networks presents difficulties in timely and low-delay content delivery. Edge caching is a promising approach for overcoming these challenges. By properly caching data, we aim to improve service performance and reduce the load on the backhaul network. We propose two unique methods for caching data in the Internet of Vehicles (IoV), based on the division of IoV data into two groups: safety and infotainment contents. Due to the different nature of each type, two unique methods are proposed for caching each type of content. The Federated Learning-based Mobility-aware Collaborative Content Caching (FM3C) method is designed for infotainment content, while the Spatio-Temporal Characteristics Aware Emergency Content Caching (STAECC) method is designed for emergency content. To predict the popularity of infotainment content, we implement a Long Short-Term Memory (LSTM) model, trained through federated learning for user privacy protection. The predicted popularity is then combined with other content characteristics through a multi-criteria decision-making method to determine the most suitable content for caching in each Road-Side Unit (RSU). Our proposed cache-aware intelligent routing method, enabled by software-defined networks (SDN), allows for cooperation among RSUs to respond to requests and deliver content. Experimental results demonstrate the effectiveness of our proposed FM3C and STAECC methods in improving cache hit rate, reducing delay, and enhancing the quality of experience (QoE) for users. In conclusion, our proposed methods offer a promising solution for the efficient provision of content in vehicular networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YFW发布了新的文献求助10
1秒前
1秒前
克拉斯完成签到,获得积分20
1秒前
1秒前
1秒前
灵主完成签到,获得积分20
2秒前
2秒前
英俊的铭应助章鱼哥采纳,获得10
2秒前
ou完成签到,获得积分10
3秒前
4秒前
大东子完成签到,获得积分10
4秒前
5秒前
ou发布了新的文献求助10
6秒前
海洋发布了新的文献求助30
6秒前
脑洞疼应助lichen采纳,获得10
7秒前
棕1完成签到 ,获得积分10
7秒前
伶俐的书白完成签到,获得积分10
7秒前
7秒前
夏天发布了新的文献求助10
7秒前
8秒前
YFW完成签到,获得积分10
8秒前
luke17743508621完成签到,获得积分10
8秒前
天天开心完成签到 ,获得积分10
9秒前
9秒前
9秒前
亮晶晶发布了新的文献求助10
9秒前
研友_LBKR9n完成签到,获得积分10
10秒前
汉堡包应助可乐采纳,获得10
10秒前
10秒前
李健应助独特棒棒糖采纳,获得10
12秒前
毛豆应助威武的赛凤采纳,获得10
13秒前
13秒前
ddrose发布了新的文献求助10
14秒前
14秒前
忍冬完成签到,获得积分10
16秒前
17秒前
17秒前
隐风发布了新的文献求助10
18秒前
舒心的曼寒完成签到,获得积分20
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306741
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497451
捐赠科研通 2614749
什么是DOI,文献DOI怎么找? 1428486
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259