胎盘植入
纹理(宇宙学)
人工智能
特征(语言学)
超声波
计算机科学
融合
模式识别(心理学)
胎盘
医学
产科
计算机视觉
放射科
怀孕
胎儿
图像(数学)
生物
语言学
遗传学
哲学
作者
Dylan Young,Naimul Khan,Sebastian R. Hobson,Dafna Sussman
标识
DOI:10.1016/j.compbiomed.2024.108757
摘要
Placenta accreta spectrum (PAS) is an obstetric disorder arising from the abnormal adherence of the placenta to the uterine wall, often leading to life-threatening complications including postpartum hemorrhage. Despite its significance, PAS remains frequently underdiagnosed before delivery. This study delves into the realm of machine learning to enhance the precision of PAS classification. We introduce two distinct models for PAS classification employing ultrasound texture features.
科研通智能强力驱动
Strongly Powered by AbleSci AI