生物
间充质干细胞
炎症
脐带
脱氢表雄酮
干细胞
内分泌学
内科学
细胞生物学
免疫学
雄激素
激素
医学
作者
Chun-Yi Guan,Dan Zhang,Xuecheng Sun,Xu Ma,Hong‐Fei Xia
出处
期刊:Stem Cells and Development
[Mary Ann Liebert]
日期:2024-05-21
标识
DOI:10.1089/scd.2023.0290
摘要
With the postponement of women's reproductive age, the difficulty of embryo implantation caused by uterine aging has become a key factor restricting fertility. However, there are few studies on protective interventions for naturally aging uteri. Although many factors cause uterine aging, such as oxidative stress, inflammation, and fibrosis, their impact on uterine function manifests as reduced endometrial receptivity. This study aimed to use a combination of human umbilical cord mesenchymal stem cells (hUC-MSC) and dehydroepiandrosterone (DHEA) to delay uterine aging. The results showed that the combined treatment of hUC-MSCs+DHEA increased the number of uterine glandular bodies and the thickness of the endometrium while inhibiting the senescence of endometrial epithelial cells. This combined treatment alleviates the expression of oxidative stress (ROS, SOD, and GSH-PX) and pro-inflammatory factors (IL-1, IL6, IL-18, and TNF-α) in the uterus, delaying the aging process. The combined treatment of hUC-MSCs+DHEA alleviated the abnormal hormone response of the endometrium, inhibited excessive accumulation and fibrosis of uterine collagen, and upregulated uterine estrogen and progesterone receptors through the PI3K/AKT/mTOR pathway. This study suggests that uterine aging can be delayed through hUC-MSCs+DHEA combination therapy, providing a new treatment method for uterine aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI