TDEC: Evidential Clustering Based on Transfer Learning and Deep Autoencoder

自编码 人工智能 聚类分析 计算机科学 学习迁移 模式识别(心理学) 深度学习 机器学习
作者
Lianmeng Jiao,Feng Wang,Zhunga Liu,Quan Pan
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 5585-5597
标识
DOI:10.1109/tfuzz.2024.3421564
摘要

Evidential clustering is a promising clustering framework using Dempster–Shafer belief function theory to model uncertain data. However, evidential clustering needs to estimate more parameters compared with other clustering algorithms, and thus the clustering performance of evidential clustering will be greatly affected if data is insufficient or contaminated. In addition, the existing evidential clustering algorithms can not well deal with high-dimensional data such as texts and images. To solve the above problems, an evidential clustering algorithm based on transfer learning and deep autoencoder (TDEC) is proposed. The TDEC utilizes deep autoencoder to obtain evidential clustering-friendly representations of the original data, and applies the maximum mean discrepancy (MMD) constraint between the source network and the target network, so that the network can learn domain-invariant features. The algorithm jointly trains the deep evidential clustering networks in the source domain and the target domain, and realizes the deep feature representations of high-dimensional data in the target domain for evidential clustering by minimizing reconstruction loss, entropy-based evidential clustering loss, MMD loss and the regular penalty term of the network parameters. In addition, an iterative optimization method to solve the TDEC objective function is proposed. Extensive experiments were conducted to evaluate the clustering performance of the proposed TDEC algorithm compared with the existing shallow transfer clustering algorithms and deep clustering algorithms. For both image and text clustering tasks, the proposed TDEC achieved approximately 5% performance improvement over the comparison algorithms on average. In addition, the practical application value of the proposed TDEC algorithm was demonstrated in unsupervised remote sensing image scene classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿荣撒完成签到,获得积分10
1秒前
JamesPei应助Diana采纳,获得10
1秒前
5秒前
瘦瘦忆南完成签到,获得积分10
5秒前
5秒前
6秒前
识途发布了新的文献求助10
6秒前
6秒前
gwx发布了新的文献求助20
6秒前
6秒前
zww发布了新的文献求助10
6秒前
杂面饼子完成签到,获得积分10
6秒前
研友_VZG7GZ应助ren采纳,获得10
7秒前
8秒前
8秒前
ss完成签到,获得积分10
8秒前
9秒前
FashionBoy应助csl采纳,获得10
9秒前
9秒前
CipherSage应助l1采纳,获得10
10秒前
三颜寻雪发布了新的文献求助10
10秒前
10秒前
我是老大应助duoduo采纳,获得10
11秒前
12秒前
su发布了新的文献求助10
12秒前
12秒前
13秒前
茄子完成签到,获得积分10
13秒前
ZLPY发布了新的文献求助10
13秒前
li12345852456发布了新的文献求助10
14秒前
邰猫猫发布了新的文献求助10
14秒前
JamesPei应助gwx采纳,获得10
14秒前
Diana发布了新的文献求助10
15秒前
充电宝应助木湾采纳,获得10
15秒前
goahead0523发布了新的文献求助10
15秒前
15秒前
bkagyin应助wzswzs采纳,获得10
15秒前
张宇琪发布了新的文献求助10
16秒前
123完成签到 ,获得积分10
16秒前
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259356
求助须知:如何正确求助?哪些是违规求助? 2901031
关于积分的说明 8313436
捐赠科研通 2570386
什么是DOI,文献DOI怎么找? 1396447
科研通“疑难数据库(出版商)”最低求助积分说明 653510
邀请新用户注册赠送积分活动 631486