Developing and optimizing a machine learning predictive model for post-thrombotic syndrome in a longitudinal cohort of patients with proximal deep venous thrombosis

血栓后综合征 接收机工作特性 医学 逻辑回归 队列 深静脉 体质指数 静脉血栓形成 决策树 随机森林 预测建模 内科学 血栓形成 外科 人工智能 机器学习 计算机科学
作者
Zhaoyu Wu,Yixuan Li,Jiahao Lei,Peng Qiu,Haichun Liu,Xinrui Yang,Tao Chen,Xinwu Lu
出处
期刊:Journal of vascular surgery. Venous and lymphatic disorders [Elsevier]
卷期号:11 (3): 555-564.e5 被引量:1
标识
DOI:10.1016/j.jvsv.2022.12.006
摘要

Post-thrombotic syndrome (PTS) is the most common chronic complication of deep venous thrombosis (DVT). Risk measurement and stratification of PTS are crucial for patients with DVT. This study aimed to develop predictive models of PTS using machine learning for patients with proximal DVT.Herein, hospital inpatients from a DVT registry electronic health record database were randomly divided into a derivation and a validation set, and four predictive models were constructed using logistic regression, simple decision tree, eXtreme Gradient Boosting (XGBoost), and random forest (RF) algorithms. The presence of PTS was defined according to the Villalta scale. The areas under the receiver operating characteristic curves, decision-curve analysis, and calibration curves were applied to evaluate the performance of these models. The Shapley Additive exPlanations analysis was performed to explain the predictive models.Among the 300 patients, 126 developed a PTS at 6 months after DVT. The RF model exhibited the best performance among the four models, with an area under the receiver operating characteristic curves of 0.891. The RF model demonstrated that Villalta score at admission, age, body mass index, and pain on calf compression were significant predictors for PTS, with accurate prediction at the individual level. The Shapley Additive exPlanations analysis suggested a nonlinear correlation between age and PTS, with two peak ages of onset at 50 and 70 years.The current predictive model identified significant predictors and accurately predicted PTS for patients with proximal DVT. Moreover, the model demonstrated a nonlinear correlation between age and PTS, which might be valuable in risk measurement and stratification of PTS in patients with proximal DVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abao完成签到 ,获得积分10
刚刚
MOON完成签到,获得积分10
刚刚
Jokic完成签到,获得积分10
1秒前
1秒前
1秒前
爱静静应助吉祥财子采纳,获得10
2秒前
3秒前
san心心发布了新的文献求助10
3秒前
JamesPei应助湫89757采纳,获得10
3秒前
科研小狗完成签到 ,获得积分10
3秒前
孤独靖柏完成签到,获得积分10
3秒前
4秒前
雷晓阳发布了新的文献求助20
5秒前
fanfan发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助神马都不懂采纳,获得10
6秒前
7秒前
灵巧母鸡完成签到,获得积分10
7秒前
yylm关注了科研通微信公众号
7秒前
浅尝离白应助单纯夏云采纳,获得30
8秒前
慕青应助一二一采纳,获得10
8秒前
18746005898发布了新的文献求助10
11秒前
Akim应助洁净的过客采纳,获得10
12秒前
12秒前
鳗鱼远山发布了新的文献求助10
13秒前
Singularity应助Ale采纳,获得10
14秒前
湫89757完成签到,获得积分10
14秒前
15秒前
孤独靖柏发布了新的文献求助10
16秒前
湫89757发布了新的文献求助10
17秒前
Ava应助默默的以松采纳,获得10
17秒前
0.5地板砖完成签到,获得积分20
19秒前
66发布了新的文献求助10
20秒前
20秒前
22秒前
跳跃雨寒完成签到 ,获得积分10
23秒前
23秒前
曾梦发布了新的文献求助10
25秒前
账户已注销应助敏感绿竹采纳,获得50
26秒前
洁净的过客完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7878979
捐赠科研通 2467322
什么是DOI,文献DOI怎么找? 1313355
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919