Hybrid Raman and Laser-Induced Breakdown Spectroscopy for Food Authentication Applications

认证(法律) 计算机科学 食品质量 激光诱导击穿光谱 产品(数学) 生化工程 人工智能 食品科学 激光器 工程类 数学 化学 计算机安全 物理 几何学 光学
作者
Sung-Ho Shin,Iyll‐Joon Doh,Kennedy Omondi Okeyo,Euiwon Bae,J. Paul Robinson,Bartek Rajwa
出处
期刊:Molecules [MDPI AG]
卷期号:28 (16): 6087-6087 被引量:2
标识
DOI:10.3390/molecules28166087
摘要

The issue of food fraud has become a significant global concern as it affects both the quality and safety of food products, ultimately resulting in the loss of customer trust and brand loyalty. To address this problem, we have developed an innovative approach that can tackle various types of food fraud, including adulteration, substitution, and dilution. Our methodology utilizes an integrated system that combines laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. Although both techniques emerged as valuable tools for food analysis, they have until now been used separately, and their combined potential in food fraud has not been thoroughly tested. The aim of our study was to demonstrate the potential benefits of integrating Raman and LIBS modalities in a portable system for improved product classification and subsequent authentication. In pursuit of this objective, we designed and tested a compact, hybrid Raman/LIBS system, which exhibited distinct advantages over the individual modalities. Our findings illustrate that the combination of these two modalities can achieve higher accuracy in product classification, leading to more effective and reliable product authentication. Overall, our research highlights the potential of hybrid systems for practical applications in a variety of industries. The integration and design were mainly focused on the detection and characterization of both elemental and molecular elements in various food products. Two different sets of solid food samples (sixteen Alpine-style cheeses and seven brands of Arabica coffee beans) were chosen for the authentication analysis. Class detection and classification were accomplished through the use of multivariate feature selection and machine-learning procedures. The accuracy of classification was observed to improve by approximately 10% when utilizing the hybrid Raman/LIBS spectra, as opposed to the analysis of spectra from the individual methods. This clearly demonstrates that the hybrid system can significantly improve food authentication accuracy while maintaining the portability of the combined system. Thus, the successful implementation of a hybrid Raman-LIBS technique is expected to contribute to the development of novel portable devices for food authentication in food as well as other various industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花花发布了新的文献求助10
3秒前
36456657应助小橘猫采纳,获得10
3秒前
krislang完成签到,获得积分10
4秒前
4秒前
雪糕发布了新的文献求助20
4秒前
GYF发布了新的文献求助10
5秒前
王不留行完成签到,获得积分10
5秒前
6秒前
7秒前
霍笑寒完成签到,获得积分10
8秒前
钟D摆完成签到 ,获得积分10
8秒前
summy发布了新的文献求助10
10秒前
topsun驳回了Owen应助
10秒前
bkagyin应助zhhl2006采纳,获得10
11秒前
Orange应助龙猫采纳,获得10
12秒前
xcxcxcily完成签到,获得积分10
13秒前
mashuai完成签到,获得积分10
13秒前
云墨完成签到 ,获得积分10
14秒前
Lucas应助SLL采纳,获得10
15秒前
小乐完成签到,获得积分10
16秒前
断罪完成签到,获得积分10
16秒前
犹豫新梅完成签到,获得积分10
19秒前
毛豆应助阿伟采纳,获得10
20秒前
firsucia发布了新的文献求助10
20秒前
科研通AI2S应助gnr2000采纳,获得10
20秒前
chaozihao发布了新的文献求助10
20秒前
lee完成签到,获得积分10
21秒前
22秒前
23秒前
25秒前
johnson7777完成签到,获得积分10
27秒前
小羊咩咩咩完成签到,获得积分10
28秒前
28秒前
scc发布了新的文献求助10
29秒前
Ni发布了新的文献求助10
29秒前
小王完成签到,获得积分20
29秒前
科研通AI2S应助阿宝采纳,获得10
30秒前
chaozihao完成签到,获得积分10
31秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308531
求助须知:如何正确求助?哪些是违规求助? 2941839
关于积分的说明 8506196
捐赠科研通 2616831
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663928
邀请新用户注册赠送积分活动 649040