Rethinking Pseudo-Label-Based Unsupervised Person Re-ID with Hierarchical Prototype-based Graph

计算机科学 人工智能 图形 一致性(知识库) 聚类分析 无监督学习 模式识别(心理学) 层次聚类 特征学习 聚类系数 机器学习 理论计算机科学
作者
Ben Sha,Baopu Li,Tao Chen,Jiayuan Fan,Tao Sheng
标识
DOI:10.1145/3581783.3611980
摘要

Unsupervised person re-identification (Re-ID) aims to match individuals without manual annotations. However, existing methods often struggle with intra-class variations due to differences in person poses and camera styles such as resolution and environment information. Additionally, clustering may produce incorrect pseudo-labels, compounding the issue. To address these challenges, we propose a novel hierarchical prototype-based graph network (HPG-Net) for unsupervised person Re-ID. Our approach uses a hierarchical prototype-based graph structure to describe person images by attributes of poses and camera styles, with each graph node representing the average of image features as a prototype. We then apply a hierarchical contrastive learning module to enhance the feature learning at each level, reducing the impact of intra-class differences caused by extraneous attributes. We also calculate the similarity between samples and each level of prototypes, maintaining prototype-based graph consistency with the mean-teacher network to mitigate the accumulation errors caused by pseudo-labels. Experimental results on three benchmarks show that our method outperforms state-of-the-art (SOTA) works. Moreover, we achieve promising performance on an occluded dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素衣完成签到,获得积分10
1秒前
Sunshine应助快乐的凡之采纳,获得50
2秒前
英俊的铭应助lalala采纳,获得10
2秒前
朴实的母鸡完成签到,获得积分10
3秒前
段翠完成签到,获得积分10
4秒前
5秒前
慕青应助wwwddk采纳,获得10
5秒前
于锦程发布了新的文献求助20
6秒前
超级无心完成签到,获得积分10
6秒前
7秒前
635913047完成签到,获得积分10
7秒前
bkagyin应助smin采纳,获得10
8秒前
靴子发布了新的文献求助10
9秒前
积极的猎豹完成签到,获得积分10
11秒前
11秒前
13秒前
只争朝夕应助微笑大螃蟹采纳,获得10
13秒前
科研小能手完成签到,获得积分10
14秒前
15秒前
17秒前
lalala发布了新的文献求助10
17秒前
靴子完成签到,获得积分20
17秒前
刘慧发布了新的文献求助10
17秒前
寻道图强举报老阎求助涉嫌违规
20秒前
JJy发布了新的文献求助10
21秒前
21秒前
haha完成签到 ,获得积分10
23秒前
吃人不眨眼应助liliy采纳,获得20
24秒前
筱x完成签到,获得积分10
25秒前
慕青应助河马采纳,获得10
26秒前
英姑应助于锦程采纳,获得10
26秒前
27秒前
28秒前
28秒前
29秒前
31秒前
32秒前
小飞飞发布了新的文献求助10
32秒前
Schmidt完成签到 ,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413